Pandas
#!/usr/bin/env python # -*- encoding: utf-8 -*- # @Time : 2022/2/8 0008 12:25 # @Author : Tzy0425 # @File : Pandas入门.py import pandas as pd import numpy as np # -----------------------------------------Series----------------------------------------- s = pd.Series([np.nan,'Tzy',520,'Lyy',1314,np.nan]) # print(s) # 默认index从0开始,如果想要按照自己的索引设置,则修改index参数,如:s = pd.Series([np.nan,'Tzy',520,'Lyy',1314,np.nan],index=[3,4,3,7,8,9]) """ 0 NaN 1 Tzy 2 520 3 Lyy 4 1314 5 NaN dtype: object """ # -----------------------------------------DataFrame----------------------------------------- # DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典 # 生成时间序列 dates = pd.date_range('2022-02-01',periods=6) """ numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值。 numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中。 """ # columns = ['a','b','c','d'] # df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=columns) df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df) """ a b c d 2022-02-01 0.146238 -1.017105 1.331782 0.486643 2022-02-02 -1.358772 -0.295397 0.181340 0.397580 2022-02-03 1.538161 1.425895 0.007177 1.705866 2022-02-04 -0.217335 0.012565 0.377702 1.270212 2022-02-05 0.409731 -2.098344 0.974976 0.986170 2022-02-06 0.249307 0.263997 -1.780088 0.422658 """ # -----------------------------------------数据筛选----------------------------------------- # 根据索引值进行数据筛选 print(df['2022-02-02':'2022-02-06']) # 指定行数据 print(df.loc['2022-02-06']) # 指定列数据,输出a到c列的所有行数据 print(df.loc[:,'a':'c']) # 行与列同时检索 print(df.loc['2022-02-06',['a','b']]) # 根据序列iloc,获取特定位置的值,即第4行第2列的值(从0开始) print(df.iloc[3,1]) # 通过判断的筛选 print(df[df.a>0]) print(df.loc[df.a>0]) # 打印b列 print(df['b']) df2 = pd.DataFrame({ 'A': [1,2,3,4], 'B': pd.Timestamp('20180819'), 'C': pd.Series([1,6,9,10],dtype='float32'), 'D': np.array([3] * 4,dtype='int32'), 'E': pd.Categorical(['test','train','test','train']), 'F': 'foo' }) print(df2) """ A B C D E F 0 1 2018-08-19 1.0 3 test foo 1 2 2018-08-19 6.0 3 train foo 2 3 2018-08-19 9.0 3 test foo 3 4 2018-08-19 10.0 3 train foo """ print(df2.index) """ RangeIndex(start=0, stop=4, step=1) """ # 选择跨越多行或多列 # 选取前3行 print(df[0:3]) # 数据总结 print(df2.describe()) """ A C D count 4.000000 4.000000 4.0 mean 2.500000 6.500000 3.0(期望) std 1.290994 4.041452 0.0(标准差) min 1.000000 1.000000 3.0 25% 1.750000 4.750000 3.0 50% 2.500000 7.500000 3.0 75% 3.250000 9.250000 3.0 max 4.000000 10.000000 3.0 """ # 翻转数据 print(df2.T) # print(np.transpose(df2))等价于上述操作 ''' axis=1表示行 axis=0表示列 默认ascending(升序)为True ascending=True表示升序,ascending=False表示降序 下面两行分别表示按行升序与按行降序 ''' print(df2.sort_index(axis=1,ascending=True)) # 对特定列数值排列 # 表示对C列降序排列 print(df2.sort_values(by='C',ascending=False)) # -----------------------------------------含NaN操作----------------------------------------- # 删除含有Nan的行(默认是删除含有Nan的行) print(df.dropna()) # 删除含有Nan的列 print(df.dropna( axis=1, # 0对行进行操作;1对列进行操作 how='any' # 'any':只要存在NaN就drop掉;'all':必须全部是NaN才drop )) # 替换NaN值为0或者其他 print(df.fillna(value=0)) # 是否有缺失数据NaN # 是否为空 print(df.isnull()) # 是否为NaN print(df.isna()) # 检测某列是否有缺失数据NaN print(df.isnull().any()) # 检测数据中是否存在NaN,如果存在就返回True print(np.any(df.isnull())==True) # -----------------------------------------导入数据----------------------------------------- # 读取csv data = pd.read_csv('student.csv') # 前三行 print(data.head(3)) # 后三行 print(data.tail(3)) # -----------------------------------------导出数据----------------------------------------- # 将资料存取成pickle data.to_pickle('student.pickle') # 读取pickle文件并打印 print(pd.read_pickle('student.pickle')) # -----------------------------------------合并数据----------------------------------------- # ----------------------concat合并---------------------- df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d']) print(df1,df2,df3) """ a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 a b c d 0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 a b c d 0 2.0 2.0 2.0 2.0 1 2.0 2.0 2.0 2.0 2 2.0 2.0 2.0 2.0 """ # concat纵向合并 res = pd.concat([df1,df2,df3],axis=0) print(res) """ a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 0 2.0 2.0 2.0 2.0 1 2.0 2.0 2.0 2.0 2 2.0 2.0 2.0 2.0 """ # 上述合并过程中,index重复,下面给出重置index方法 # 只需要将index_ignore设定为True即可 res = pd.concat([df1,df2,df3],axis=0,ignore_index=True) print(res) """ a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 6 2.0 2.0 2.0 2.0 7 2.0 2.0 2.0 2.0 8 2.0 2.0 2.0 2.0 """ # ----------------------join合并---------------------- #定义资料集 df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3]) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4]) print(df1,df2) """ a b c d 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 b c d e 2 1.0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0 """ ''' 函数默认为join='outer'。此方法是依照column来做纵向合并,有相同的column上下合并在一起,其他独自的column各自成列,原来没有值的位置皆为NaN填充。 ''' # 纵向"外"合并df1与df2 res = pd.concat([df1,df2],axis=0,join='outer') print(res) ''' a b c d e 1 0.0 0.0 0.0 0.0 NaN 2 0.0 0.0 0.0 0.0 NaN 3 0.0 0.0 0.0 0.0 NaN 2 NaN 1.0 1.0 1.0 1.0 3 NaN 1.0 1.0 1.0 1.0 4 NaN 1.0 1.0 1.0 1.0 ''' # 修改index,效果同上 res1 = pd.concat([df1,df2],axis=0,join='outer',ignore_index=True) # join='inner'合并相同的字段,纵向"内"合并df1与df2 # inner就是合并相同的行,outer是扩展到最大的行 res2 = pd.concat([df1,df2],axis=0,join='inner') ''' b c d 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 0.0 0.0 0.0 2 1.0 1.0 1.0 3 1.0 1.0 1.0 4 1.0 1.0 1.0 ''' # ----------------------join_axes合并---------------------- # 依照df1.index进行横向合并 res = pd.concat([df1,df2],axis=1,join_axes=[df1.index]) print(res) ''' a b c d b c d e 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 # 移除join_axes参数,打印结果 ''' res = pd.concat([df1,df2],axis=1) print(res) ''' a b c d b c d e 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0 ''' # ----------------------append合并---------------------- # 只有纵向合并,没有横向合并 # ----------------------merge合并---------------------- left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) print(left,right) ''' A B key1 key2 0 A0 B0 K0 K0 1 A1 B1 K0 K1 2 A2 B2 K1 K0 3 A3 B3 K2 K1 C D key1 key2 0 C0 D0 K0 K0 1 C1 D1 K1 K0 2 C2 D2 K1 K0 3 C3 D3 K2 K0 ''' # 依据key1与key2 columns进行合并,并打印出四种结果['left', 'right', 'outer', 'inner'] res = pd.merge(left, right, on=['key1', 'key2'], how='inner') print(res) ''' A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A2 B2 K1 K0 C1 D1 2 A2 B2 K1 K0 C2 D2 ''' res = pd.merge(left, right, on=['key1', 'key2'], how='outer') print(res) ''' A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A1 B1 K0 K1 NaN NaN 2 A2 B2 K1 K0 C1 D1 3 A2 B2 K1 K0 C2 D2 4 A3 B3 K2 K1 NaN NaN 5 NaN NaN K2 K0 C3 D3 ''' res = pd.merge(left, right, on=['key1', 'key2'], how='left') print(res) ''' 因为C、D两列中第0行和第2行对应的key1与key2在left和right中是一样的,所以输出C0,D0,C1,D1,其余为NaN A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A1 B1 K0 K1 NaN NaN 2 A2 B2 K1 K0 C1 D1 3 A3 B3 K2 K1 NaN NaN ''' res = pd.merge(left, right, on=['key1', 'key2'], how='right') print(res) ''' A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 NaN NaN K1 K0 C1 D1 2 A2 B2 K1 K0 C2 D2 3 NaN NaN K2 K0 C3 D3 ''' # -----------------------------------------解决 overlapping 的问题----------------------------------------- boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]}) girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]}) print(boys,girls) ''' age k 0 1 K0 1 2 K1 2 3 K2 age k 0 4 K0 1 5 K0 2 6 K3 ''' # 使用suffixes解决overlapping的问题 # 比如将上面两个合并时,age重复了,则可通过suffixes设置,以此保证不重复,不同名 res = pd.merge(boys,girls,on='k',suffixes=['_boy','_girl'],how='inner') print(res) ''' age_boy k age_girl 0 1 K0 4 1 1 K0 5 ''' # -----------------------------------------Pandas plot 出图----------------------------------------- import matplotlib.pyplot as plt data = pd.Series(np.random.randn(1000), index=np.arange(1000)) print(data) # cumsum()输出累加结果 print(data.cumsum()) # data本来就是一个数据,所以我们可以直接plot data.plot() plt.show() # scatter()画散点图 ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1') # 将以下这个 data 画在上一个 ax 上面 data.plot.scatter(x='A',y='C',color='LightGreen',label='Class2',ax=ax) plt.show() # 总结自: # https://mp.weixin.qq.com/s/uLBJc_iIize8a9B491U7VQ