poj1985和poj1849(树的直径)
题目传送门:poj1985
树是连通无环图,树上任意两点之间的路径是唯一的。定义树上任 意两点u, v的距离为u到v路径上边权的和。树的直径MN为树上最长路 径,即点M和N是树上距离最远的两个点。
题目就是寻找树的直径的版子题,两次dfs(第一次遍历根节点所到达的最远距离x点,第二次dfs从x到达最远距离y,这个就是树的直径),或者树形dp,我这里用到了树形dp;
还要感谢石神对我的教导和更正,让我接触了树形dp;
但这个题的代码就不给出了,因为在下面一题的代码中会体现。。
题目:poj1849
所以这里我不仅给出题目的答案,我们也来讨论一下每一种情况;
假设只有1个机器人遍历树,且要求回到原点, 它最少需要走多少路?
2 × ∑wi。
若不用回到原点?
2 × ∑wi−(从出发点所能到达的最远距离)。即 沿着最远距离走,过程中每个分叉走两遍。
假设只有2个机器人遍历树,且要求回到原点, 它最少需要走多少 路?
2 ×∑wi。
若不用回到原点?
2 ×∑wi−(树的直径)。
这个题就是最后一种情况,
分析:考虑从一个结点遍历整个树再回到原点需要把每个边计算两遍,这 里机器人不用回到出发点,所以两个机器人到达的点越远越好。 要使路程最近,若起点在树的直径上,则两辆车往不同的方向走, 直径上的边只用走一遍,其他的要走两遍。 若起点不在直径上,则两人一起走到直径上,再往不同的方向走。 这样最优解就是所有边×2−直径,因为直径只走了一次,而其他边 必走两遍。
#include<algorithm> #include<bitset> #include<cctype> #include<cerrno> #include<clocale> #include<cmath> #include<complex> #include<cstdio> #include<cstdlib> #include<cstring> #include<ctime> #include<deque> #include<exception> #include<fstream> #include<functional> #include<limits> #include<list> #include<map> #include<iomanip> #include<ios> #include<iosfwd> #include<iostream> #include<istream> #include<ostream> #include<queue> #include<set> #include<sstream> #include<stack> #include<stdexcept> #include<streambuf> #include<string> #include<utility> #include<vector> #include<cwchar> #include<cwctype> using namespace std; const int maxn=4e4+10; template<typename T>inline void read(T &x) { x=0; T f=1,ch=getchar(); while (!isdigit(ch) && ch^'-') ch=getchar(); if (ch=='-') f=-1, ch=getchar(); while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48), ch=getchar(); x*=f; } int n,m,a,b,c,point,tot,ans,sum; int dis[40000],vis[40000],lin[40000]; struct gg { int y,next,v; }an[50000]; void add(int x,int y,int z) { an[++tot].y=y; an[tot].v=z; an[tot].next=lin[x]; lin[x]=tot; } inline int dp(int x) { vis[x]=1; for(int i=lin[x];i;i=an[i].next) { int y=an[i].y; if(vis[y]) continue; dp(y); ans=max(ans,dis[x]+dis[y]+an[i].v); dis[x]=max(dis[x],dis[y]+an[i].v); } return ans; } int main() { int sum=0; read(n);read(m); for(int i=1;i<n;i++) { read(a),read(b),read(c); add(a,b,c); add(b,a,c); sum+=c; } dp(1); printf("%d\n",(sum<<1)-ans); return 0; }