【Burnside定理】&【Pólya定理】
Burnside & Pólya
(详细内容请参阅《组合数学》或2008年cyx的论文,这里只写一些我学习的时候理解困难的几个点,觉得我SB的请轻鄙视……如果有觉得不科学的地方欢迎留言)
Burnside:
我们要证明的是:$$N(G,C)=\frac{1}{|G|} \sum_{f \in G}|C(f)|$$
难点一:非等价着色数=等价类数目($N(G,C)$),这其实是从等价类的定义来的。。。因为一个等价类表示着一种与众不同的染色方案,当然有多少个等价类就有多少种非等价染色方案啦……(我是SB没想到QAQ)
证明主要是这样一个过程:(UOJ群神犇_数学迷:算两次,即同一个量以两种方法计算得到一个式子的方法)
难点二:我们的式子是:$$\sum_{f \in G} |C(f)| = \sum_{c \in C} |G(c)| $$
(我以二分图的模型来解释或许好理解一些?)
我们现在有 n 种染色方式(其中有一些是等价的),m 种置换。对于某种染色$c$和置换$f$,如果我们有 $f*c=c$,我们就连一条边 $c->f$
所以左边的点的度数和=右边的点的度数和=总边数
接下来,因为有(这个大概也算个难点吧……)$$ (与c等价的着色数)=\frac{|G|}{|G(c)|} $$
所以:$$ |G(c)|=\frac{|G|}{(与c等价的着色数)} $$
因此我们可以对刚刚的右边的式子变形,得到:$$ \sum_{c \in C} |G(c)|=|G| \sum_{c \in C} \frac{1}{(与c等价的着色数)}$$
难点三:这里我们发现:每一种着色方式我们都加了$\frac{1}{(与c等价的着色数)}$,我们可以按等价类分开,等价类中的每一种着色方式都加了$$\frac{1}{这个等价类的大小}$$所以每个等价类的贡献就是1,所以刚刚的右边的式子等于$$|G|*N(G,C)$$
得证。
Pólya:
了解了Burnside定理以后,我们对于等价类计数就有了这样一个方法:枚举染色方式(枚举每一格的染色方式)和置换方式,找到每个置换方式的不动点数目……然而这个复杂度比较高,所以我们可以拿Pólya来优化一下~
Pólya的做法是:只考虑染色的种类以及置换的方式,然后直接用【循环分解】的方式计算出每个置换的不动点数目,这样就少枚举了一维,降低了复杂度。(枚举每个置换,循环分解是O(p)的,p是格子数)
(然而刚刚的bb其实是不完整的,不过先这样理解好了。。。复杂一点的我也不会TAT)
刚刚说到直接用循环分解的方式计算出每个置换的不动点数目,这是怎么回事呢?我们发现,在这个置换下不动的染色方案,每一个循环一定是染了相同的颜色,所以这个置换方式下不动点数目就是 $(颜色数)^{(循环数)}$
不过我刚刚说的只是限于一种简单的情况……更多更完整的问题……还是看书吧T_T我这么弱……是吧……