【BZOJ】【4010】【HNOI2015】菜肴制作

拓扑排序


  这题是要求N个点的一个拓扑序,且满足以下条件:编号1的位置尽可能靠前,在此基础上编号2的位置尽可能靠前……

  

  我看到这题的第一感觉:将拓扑排序用的队列改为优先队列,编号越小越早出来。

  但是连样例都过不了= =因为这样做是【字典序最小】,并不一定满足题目的条件(看样例就知道了,这样其实是早出队的元素编号尽量小,并不完全是编号小的早出队)

  那么怎么搞呢?正着不行还不让我们反着来吗>_>

 

  将所有边反向!搞逆拓扑序!这次我们让早出队的元素编号越大越好,也就是让编号越小的尽量靠后,因为在原序中靠前,就是在拓扑逆序中靠后。

  然后就AC辣~

 

  其实蒟蒻也不会证明……感性理解就是:对于编号小的元素,尽可能用编号比他大的进行拖延,让他晚出队,应该是有点贪心的思想吧= =

  证明:http://zyfzyf.is-programmer.com/posts/89618.html

      http://www.cnblogs.com/vb4896/p/4083650.html

P.S.这应该是这次胡策中最简单的一题了吧……反而放在C题的位置……

 1 /**************************************************************
 2     Problem: 4010
 3     User: Tunix
 4     Language: C++
 5     Result: Accepted
 6     Time:820 ms
 7     Memory:4520 kb
 8 ****************************************************************/
 9  
10 //Huce #7 C
11 #include<queue>
12 #include<vector>
13 #include<cstdio>
14 #include<cstdlib>
15 #include<cstring>
16 #include<iostream>
17 #include<algorithm>
18 #define rep(i,n) for(int i=0;i<n;++i)
19 #define F(i,j,n) for(int i=j;i<=n;++i)
20 #define D(i,j,n) for(int i=j;i>=n;--i)
21 using namespace std;
22  
23 int getint(){
24     int v=0,sign=1; char ch=getchar();
25     while(ch<'0'||ch>'9') {if (ch=='-') sign=-1; ch=getchar();}
26     while(ch>='0'&&ch<='9') {v=v*10+ch-'0'; ch=getchar();}
27     return v*sign;
28 }
29 typedef long long LL;
30 const int N=100010,INF=~0u>>2;
31 /*******************template********************/
32 int to[N<<1],next[N<<1],head[N],cnt;
33 void add(int x,int y){
34     to[++cnt]=y; next[cnt]=head[x]; head[x]=cnt;
35 }
36 int n,m,du[N];
37 void init(){
38     n=getint(); m=getint();
39     cnt=0; memset(head,0,sizeof head);
40     memset(du,0,sizeof du);
41     int x,y;
42     F(i,1,m){
43         x=getint(); y=getint();
44         swap(x,y);
45         add(x,y); du[y]++;
46     }
47 }
48 int ans[N],tot;
49 void solve(){
50     priority_queue<int>Q;
51     F(i,1,n) if (!du[i]) Q.push(i);
52     tot=0;
53     while(!Q.empty()){
54         int x=Q.top(); Q.pop();
55         ans[++tot]=x;
56         for(int i=head[x];i;i=next[i]){
57             du[to[i]]--;
58             if (du[to[i]]==0) Q.push(to[i]);
59         }
60     }
61     if (tot==n) {D(i,tot,1) printf("%d ",ans[i]); puts("");} 
62     else puts("Impossible!");
63 }
64      
65 int main(){
66 #ifndef ONLINE_JUDGE
67     freopen("C.in","r",stdin);
68 //  freopen("output.txt","w",stdout);
69 #endif
70     int T=getint();
71     while(T--){
72         init();
73         solve();
74     }
75     return 0;
76 }
View Code

4010: [HNOI2015]菜肴制作

Time Limit: 5 Sec  Memory Limit: 512 MB
Submit: 267  Solved: 159
[Submit][Status][Discuss]

Description

知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。 

ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予
1到N的顺序编号,预估质量最高的菜肴编号为1。由于菜肴之间口味搭配的问题,
某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如“i 号菜肴‘必须’
先于 j 号菜肴制作”的限制,我们将这样的限制简写为<i,j>。现在,酒店希望能求
出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:也就是说,
(1)在满足所有限制的前提下,1 号菜肴“尽量”优先制作;(2)在满足所有限制,1
号菜肴“尽量”优先制作的前提下,2号菜肴“尽量”优先制作;(3)在满足所有限
制,1号和2号菜肴“尽量”优先的前提下,3号菜肴“尽量”优先制作;(4)在满
足所有限制,1 号和 2 号和 3 号菜肴“尽量”优先的前提下,4 号菜肴“尽量”优
先制作;(5)以此类推。 
例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。例2:共
5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。例1里,首先考虑 1,
因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号
又应“尽量”比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来
考虑2,确定最终的制作顺序是 3,4,1,2。例 2里,首先制作 1是不违背限制的;接
下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有
<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。 
现在你需要求出这个最优的菜肴制作顺序。无解输出“Impossible!” (不含引号,
首字母大写,其余字母小写) 

Input

 第一行是一个正整数D,表示数据组数。 

接下来是D组数据。 
对于每组数据: 
第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限
制的条目数。 
接下来M行,每行两个正整数x,y,表示“x号菜肴必须先于y号菜肴制作”
的限制。(注意:M条限制中可能存在完全相同的限制) 

Output

 输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或

者”Impossible!”表示无解(不含引号)。 

Sample Input

3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3

Sample Output

1 5 3 4 2
Impossible!
1 5 2 4 3

HINT

 【样例解释】 


第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于

菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。 

100%的数据满足N,M<=100000,D<=3。 

Source

[Submit][Status][Discuss]

  

posted @ 2015-04-23 16:42  Tunix  阅读(240)  评论(0编辑  收藏  举报