POJ 3680_Intervals
题意:
给定区间和该区间对应的权值,挑选一些区间,求使得每个数都不被K个区间覆盖的最大权值和。
分析:
如果K=1,即为区间图的最大权独立集问题。可以对区间所有端点排序后利用动态规划的方法,设dp[i]为只考虑区间右端点小于等于
dp[i] = max(dp[i - 1], max{dp[j] + w[k])|a[k] = x[j]且b[k] = x[i]}
K>1,既然求权重最大值,利用最小费用流,很容易想到从
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 505, maxm = 1000;
const int INF = 0x3f3f3f3f;
int s, t, tot;
int dist[maxm], prevv[maxm], preve[maxm], head[maxm];
int a[maxn], b[maxn], w[maxn], tt[maxm];
bool in[maxn];
struct Edge{ int from, to, next, cap, cost;}edge[maxm * 3];
void add_edge(int from, int to, int cap, int cost)
{
edge[tot].to = to;
edge[tot].from = from;
edge[tot].cap = cap;
edge[tot].cost = cost;
edge[tot].next = head[from];
head[from] = tot++;
edge[tot].to = from;
edge[tot].from = to;
edge[tot].cap = 0;
edge[tot].cost = -cost;
edge[tot].next = head[to];
head[to] = tot++;
}
int mincost()
{
int flow=0, cost=0;
for(;;){
memset(dist, 0x3f, sizeof(dist));
memset(in, false, sizeof(in));
queue<int>q;
q.push(s);
in[s] = true;
dist[s]=0;
while(!q.empty()){
int u = q.front();q.pop();
in[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next){
Edge e = edge[i];
if(e.cap>0 && dist[e.to] > dist[u] + e.cost){
dist[e.to] = dist[u] + e.cost;
prevv[e.to] = u, preve[e.to] = i;
if(!in[e.to]){
in[e.to] = true;
q.push(e.to);
}
}
}
}
if(dist[t] == INF) return cost;
int d = INF;
for(int i = t; i != s; i = prevv[i])
d = min(d, edge[preve[i]].cap);
flow += d;
cost += dist[t] * d;
for(int i = t; i != s; i = prevv[i]){
edge[preve[i]].cap -= d;
edge[preve[i]^1].cap += d;
}
}
}
int main()
{
int c;scanf("%d",&c);
while(c--){
int N, K;
memset(head,-1,sizeof(head));
tot = 0;
int n = 0;
scanf("%d%d",&N, &K);
for(int i = 0; i < N; i++){
scanf("%d%d%d", &a[i], &b[i], &w[i]);
tt[n++] = a[i];
tt[n++] = b[i];
}
sort(tt, tt + n);
int nn = unique(tt, tt +n) - tt;
int na, nb;
for(int i = 0; i < N; i++){
na = lower_bound(tt, tt + nn, a[i]) - tt;
nb = lower_bound(tt, tt + nn, b[i]) - tt;
add_edge(na + 1, nb + 1, 1, -w[i]);
}
s = 0, t = nn + 1;
add_edge(s, 1, K, 0);
for(int i = 1; i <= nn; i++)
add_edge(i, i + 1, K, 0);
printf("%d\n",-mincost());
}
return 0;
}
其实这题也可以是从
tle了一整天。。。。
很巧妙的构图~~~