【DP】动态规划专题
背包问题
2. 01背包问题
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n, m;
int f[N];
int main()
{
scanf("%d%d", &n, &m);
while(n -- )
{
int v, w;
scanf("%d%d", &v, &w);
for(int j = m; j >= v; j -- )
f[j] = max(f[j], f[j - v] + w);
}
printf("%d", f[m]);
return 0;
}
写法二:
#include <iostream>
using namespace std;
const int N = 1010;
int n,m;
int v[N], w[N];
int f[N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for(int i = 1; i <= n; i ++ )
for(int j = m; j >= v[i]; j -- )
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1397858/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
3. 完全背包问题
#include <iostream>
using namespace std;
const int N = 1010;
int n,m;
int v[N], w[N];
int f[N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for(int i = 1; i <= n; i ++ )
for(int j = v[i]; j <= m; j ++ )
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1398967/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
4. 多重背包问题 I
#include <iostream>
using namespace std;
const int N = 110;
int n,m;
int v[N], w[N], s[N];
int f[N][N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
for(int i = 1; i <= n; i ++ )
for(int j = 0; j <= m; j ++ )
for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);
cout << f[n][m] << endl;
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1401139/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
5. 多重背包问题 II
#include <iostream>
using namespace std;
const int N = 25000;
int n,m;
int v[N], w[N];
int f[N];
int main()
{
cin >> n >> m;
int cnt = 0;
for(int i = 1; i <= n; i ++ )
{
int a,b,s;
cin >> a >> b >> s;
//二进制优化
int k = 1;
while(k <= s)
{
cnt ++ ;
v[cnt] = a * k;
w[cnt] = b * k;
s -= k;
k *= 2;
}
if(s > 0) //还剩下一最后一组(即差一部分不能用2的整数次幂表示的部分)
{
cnt ++ ;
v[cnt] = a * s;
w[cnt] = b * s;
}
}
n = cnt;
for(int i = 1; i <= n; i ++ )
for(int j = m; j >= v[i]; j -- )
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1401182/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
6. 多重背包问题 III
单调队列优化
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 20010;
int n, m;
int f[N], g[N], q[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i ++ )
{
int v, w, s;
scanf("%d%d%d", &v, &w, &s);
memcpy(g, f, sizeof f);
for(int j = 0; j < v; j ++ )
{
int hh = 0, tt = -1;
for(int k = j; k <= m; k += v )
{
while(hh <= tt && q[hh] < k - s * v) hh ++ ;
if(hh <= tt) f[k] = max(f[k], g[q[hh]] + (k - q[hh]) / v * w);
while(hh <= tt && g[q[tt]] - (q[tt] - j) / v * w <= g[k] - (k - j) / v * w) tt -- ;
q[ ++ tt ] = k;
}
}
}
printf("%d\n", f[m]);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1542933/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
7. 混合背包问题
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n, m;
int f[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++ )
{
int v, w ,s;
scanf("%d%d%d", &v, &w, &s);
if(s == 0) //完全背包问题
{
for(int j = v; j <= m; j ++ )
f[j] = max(f[j], f[j - v] + w);
}
else //01背包或者多重背包(01背包是s=1时多重背包的特殊情况,可以合并在一起写)
{
if(s == -1) s = 1; //如果是01背包,将s设置为1即可
for(int k = 1; k <= s; k *= 2 ) //二进制优化
{
for(int j = m; j >= k * v; j -- )
f[j] = max(f[j], f[j - k * v] + k * w);
s -= k;
}
if(s) //如果s不为0,即还有剩下的部分
{
for(int j = m; j >= s * v; j -- )
f[j] = max(f[j], f[j - s * v] + s * w);
}
}
}
printf("%d\n", f[m]);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1559531/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
8. 二维费用的背包问题
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n, V, M;
int f[N][N];
int main()
{
scanf("%d%d%d", &n, &V, &M);
for(int i = 0; i < n; i ++ )
{
int v, m, w;
scanf("%d%d%d", &v, &m, &w);
for(int j = V; j >= v; j -- )
for(int k = M; k >= m; k -- )
f[j][k] = max(f[j][k], f[j - v][k - m] + w);
}
printf("%d\n", f[V][M]);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1547333/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
9. 分组背包问题
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m;
int f[N];
int v[N][N], w[N][N], s[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i ++ )
{
scanf("%d", &s[i]);
for(int j = 0; j < s[i]; j ++ )
{
scanf("%d%d", &v[i][j], &w[i][j]);
}
}
for(int i = 0; i < n; i ++ )
for(int j = m; j >= 0; j -- )
for(int k = 0; k < s[i]; k ++ )
if(j >= v[i][k])
f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
printf("%d\n", f[m]);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1401214/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
10. 有依赖的背包问题
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 110;
int n, m;
int f[N][N], v[N], w[N];
int h[N], e[N], ne[N], idx;
void add(int a, int b) // 建立一条由a指向b的边
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx ++ ;
}
void dfs(int u)
{
for(int i = h[u]; i != -1; i = ne[i]) // i != -1 可以简写为~i
{
int son = e[i];
dfs(son);
//分组背包
for(int j = m - v[u]; j >= 0; j -- )
for(int k = 0; k <= j; k ++ )
f[u][j] = max(f[u][j], f[u][j - k] + f[son][k]);
}
//将物品u加进去
for(int i = m; i >= v[u]; i -- ) f[u][i] = f[u][i -v[u]] + w[u];
for(int i = 0; i < v[u]; i ++ ) f[u][i] = 0;
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
int root;
for(int i = 1; i <= n; i ++ )
{
int p;
scanf("%d%d%d", &v[i], &w[i], &p);
if(p == -1) root = i;
else add(p, i); // 建立从父结点p指向当前结点i的边
}
dfs(root);
printf("%d\n", f[root][m]);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1560301/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
11. 背包问题求方案数
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010, mod = 1e9 + 7;
int n, m;
int f[N], g[N];
int main()
{
scanf("%d%d", &n, &m);
memset(f, -0x3f, sizeof f);
f[0] = 0;
g[0] = 1;
for(int i = 1; i <= n; i ++ )
{
int v, w;
scanf("%d%d", &v, &w);
for(int j = m; j >= v; j -- )
{
int maxv = max(f[j], f[j - v] + w);
int cnt = 0;
if(maxv == f[j]) cnt += g[j];
if(maxv == f[j - v] + w) cnt += g[j - v];
g[j] = cnt % mod;
f[j] = maxv;
}
}
int res = 0;
for(int i = 0; i <= m; i ++ ) res = max(res, f[i]);
int cnt = 0;
for(int i = 0; i <= m; i ++ )
{
if(res == f[i]) cnt = (cnt + g[i]) % mod;
}
printf("%d\n", cnt);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1561642/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
12. 背包问题求具体方案
求具体方案则不能压缩空间,必须用两维
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int f[N][N];
int v[N], w[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
for(int i = n; i >= 1; i -- )
{
for(int j = 0; j <= m; j ++ )
{
f[i][j] = f[i + 1][j]; //从大往小更新,所以从f[i + 1]开始
if(j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
}
}
int j = m;
for(int i = 1; i <= n; i ++ )
{
if(j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i])
{
printf("%d ", i);
j -= v[i];
}
}
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1552070/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
写法二:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++ ) scanf("%d%d", &v[i], &w[i]);
for(int i = n; i; i -- )
{
for(int j = 0; j <= m; j ++ )
{
f[i][j] = f[i + 1][j];
if(j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
}
}
int i = 1, j = m;
while(i <= n)
{
if(j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i])
{
printf("%d ", i);
j -= v[i];
i ++ ;
}
else i ++ ;
}
return 0;
}
数字三角形模型
最长上升子序列模型
895. 最长上升子序列
#include <iostream>
using namespace std;
const int N = 1010;
int n;
int a[N], f[N];
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for(int i = 1; i <= n; i ++ )
{
f[i] = 1;
for(int j = 1; j < i; j ++ )
{
if(a[j] < a[i])
f[i] = max(f[i], f[j] + 1);
}
}
int res = 0;
for(int i = 1; i <= n; i ++ ) res = max(res, f[i]);
printf("%d\n", res);
return 0;
}
896. 最长上升子序列 II
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e6 + 10;
int n;
int q[N], a[N];
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
int len = 0;
q[0] = -2e9;
for(int i = 0; i < n; i ++ )
{
int l = 0, r = len;
while(l < r)
{
int mid = l + r + 1 >> 1;
if(q[mid] < a[i]) l = mid;
else r = mid - 1;
}
len = max(len, r + 1);
q[r + 1] = a[i];
}
printf("%d\n", len);
return 0;
}
最长公共子序列模型
897. 最长公共子序列
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n,m;
char a[N], b[N];
int f[N][N];
int main()
{
scanf("%d%d",&n,&m);
scanf("%s%s",a + 1, b + 1);
for(int i = 1; i <= n; i ++ )
for(int j = 1; j <= m; j ++ )
{
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
if(a[i] == b[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
}
printf("%d\n", f[n][m]);
return 0;
}
作者:Once.
链接:https://www.acwing.com/activity/content/code/content/1413988/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。