【BZOJ 2673】[Wf2011]Chips Challenge

题目大意:

  传送门

  $n*n$的棋盘,有一些位置可以放棋子,有一些已经放了棋子,有一些什么都没有,也不能放,要求放置以后满足:第i行和第i列的棋子数相同,同时每行的棋子数占总数比例小于$\frac{A}{B}$。求最多可以放多少,无解则输出$impossible$。

题解:

   Orz一发大佬——传送门

  先把整张图放满,题目就转化为最少删多少点就合法。

  我们用$numx$来记录每行可以放的和已经放棋子总数,$numy$记录每列。从$S$向第i行连流量为$numx_i$的0费用边,从第j列向$T$连流量为$numy_j$的边。先不考虑怎么构建中间的图,在不考虑$\frac{A}{B}$的情况,我们需要判断流量合法的,我们可以让到$T$的边都满流意味着选了和没选的可以构成全集。

  我们对于可以放棋子的地方$(x,y)$,由第$x$行到第$y$列连$flow=1,cost=1$的边,表示将这个点删去的所需价值。

  考虑后一个限制。

  我们可以枚举每一行最多放置的棋子个数$f$,然后我们从第$i$行向第$i$列连一条$flow=f,cost=0$的边。表示第i行选了最多保留$f$个棋子,第$i$列保留棋子等同于这条边的流量,因为其他连向第$i$列的边都是要费用的,对第$i$行来讲其他的出边也是要费用的,而那些要费用的边就是删去的集合。

  然后判断一下当前解是否合法即可。

代码:

  1 #include "bits/stdc++.h"
  2 
  3 using namespace std;
  4 
  5 #define inf 0x3f3f3f3f
  6 
  7 inline int read() {
  8     int s=0,k=1;char ch=getchar ();
  9     while (ch<'0'|ch>'9') ch=='-'?k=-1:0,ch=getchar();
 10     while (ch>47&ch<='9') s=s*10+(ch^48),ch=getchar();
 11     return s*k;
 12 }
 13 
 14 const int N=100;
 15 
 16 struct edges {
 17     int v,cap,cost;edges *pair,*last;
 18 }edge[N*N],*head[N];int cnt;
 19 
 20 inline void push(int u,int v,int cap,int cost) {
 21     edge[++cnt]=(edges){v,cap,cost,edge+cnt+1,head[u]},head[u]=edge+cnt;
 22     edge[++cnt]=(edges){u,0,-cost,edge+cnt-1,head[v]},head[v]=edge+cnt;
 23 }
 24 
 25 int S,T,n,fl,ans;
 26 int piS,vis[N];
 27 int cost;
 28 
 29 inline int aug(int x,int w) {
 30     if (x==T) return cost+=1ll*piS*w,fl+=w,w;
 31     vis[x]=true;
 32     int ret=0;
 33     for (edges *i=head[x];i;i=i->last)
 34         if (i->cap&&!i->cost&&!vis[i->v])   {
 35             int flow=aug(i->v,min(i->cap,w));
 36             i->cap-=flow,i->pair->cap+=flow,ret+=flow,w-=flow;
 37             if (!w) break;
 38         }
 39     return ret;
 40 }
 41 
 42 inline bool modlabel() {
 43     static int d[N];
 44     memset(d,0x3f,sizeof d);d[T]=0;
 45     static deque<int> q;q.push_back(T);
 46     int dt;
 47     while (!q.empty()) {
 48         int x=q.front();q.pop_front();
 49         for (edges *i=head[x];i;i=i->last)  
 50             if (i->pair->cap&&(dt=d[x]-i->cost)<d[i->v])
 51                 (d[i->v]=dt)<=d[q.size()?q.front():0]
 52                     ?q.push_front(i->v):q.push_back(i->v);
 53     }
 54     for (int i=S;i<=T;++i)
 55         for (edges *j=head[i];j;j=j->last)
 56             j->cost+=d[j->v]-d[i];
 57     piS+=d[S];
 58     return d[S]<inf;
 59 }
 60 
 61 inline void solve() {
 62     piS = cost = 0;
 63     while(modlabel())
 64         do memset(vis,0,sizeof vis); 
 65     while(aug(S, inf));
 66 }
 67 
 68 char mp[N][N];
 69 int numx[N],numy[N],A,B;
 70 
 71 int main() {
 72     n=read(),A=read(),B=read();  
 73     T=n<<1|1;
 74     int used=0,sum=0;
 75     ans=-1;
 76     for (int i=1;i<=n;++i)  {
 77         scanf("%s",mp[i]+1);
 78         for (int j=1;j<=n;++j)
 79             if(mp[i][j]=='C'||mp[i][j]=='.')    {
 80                 ++sum,++numx[i],++numy[j];
 81                 used+=mp[i][j]=='C';
 82             }
 83     } 
 84     for (int flow=0;flow<=n;++flow) {
 85         memset(head,0,sizeof head);
 86         cnt=0;fl=0;
 87         for (int i=1;i<=n;++i) {
 88             push(S,i,numx[i],0);
 89             push(i+n,T,numy[i],0);
 90             push(i,i+n,flow,0);
 91             for (int j=1;j<=n;++j) 
 92                 if(mp[i][j]=='.')
 93                     push(i,j+n,1,1);
 94         }
 95         solve();
 96         if (fl==sum&&flow*B<=(sum-cost)*A)
 97             ans=max(ans,sum-cost);
 98     }
 99     if (ans==-1)   puts("impossible");
100     else printf("%d\n",ans-used);
101 }

 

posted @ 2018-04-15 15:07  Troywar  阅读(599)  评论(1编辑  收藏  举报