//目录

ROIPooing

暂时不纠结 faster rcnn 最后一步是不是全连接层(gluoncv里面是rcnn层);

说一下feature map 和 anchor (Proposal) 作为输入,怎么计算ROIPooing ,怎么对应的。

例:

anchor [0,0,0,20,20] 缩放后是 3*3,ROIPooing 2*2,feature map 4*4;

from mxnet import nd

X = nd.arange(16).reshape((1,1,4,4))
print(X)

rois = nd.array([[0,0,0,20,20],[0,0,10,30,30]])

print(nd.ROIPooling(X,rois,pooled_size=(2,2),spatial_scale=0.1))

 这在gluoncv里面是同样的写法:默认_roi_size = (14,14)

# ROI features
if self._roi_mode == 'pool':
    pooled_feat = F.ROIPooling(feat, rpn_roi, self._roi_size, 1. / self._stride)
elif self._roi_mode == 'align':
    pooled_feat = F.contrib.ROIAlign(feat, rpn_roi, self._roi_size, 1. / self._stride,
                                             sample_ratio=2)

之后可以来一个完整的gluoncv 的 faster rcnn 的 forward 计算的分析 ^_^

posted @ 2019-01-21 12:13  小草的大树梦  阅读(284)  评论(0编辑  收藏  举报