//目录

gluoncv 训练自己的数据集,进行目标检测

跑了一晚上的模型,实在占GPU资源,这两天已经有很多小朋友说我了。我选择了其中一个参数。

https://github.com/dmlc/gluon-cv/blob/master/scripts/detection/faster_rcnn/train_faster_rcnn.py

train_faster_rcnn的修改之前就弄好了,这里贴一个完整的。

"""Train Faster-RCNN end to end."""
import argparse
import os
# disable autotune
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
import logging
import time
import numpy as np
import mxnet as mx
from mxnet import nd
from mxnet import gluon
from mxnet import autograd
import gluoncv as gcv
from gluoncv import data as gdata
from gluoncv import utils as gutils
from gluoncv.model_zoo import get_model
from gluoncv.data import batchify
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultValTransform
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
from gluoncv.utils.metrics.accuracy import Accuracy

# add_lst
from gluoncv.data import LstDetection


def parse_args():
    parser = argparse.ArgumentParser(description='Train Faster-RCNN networks e2e.')
    parser.add_argument('--network', type=str, default='resnet50_v1b',
                        help="Base network name which serves as feature extraction base.")
    parser.add_argument('--dataset', type=str, default='voc',
                        help='Training dataset. Now support voc and coco.')
    parser.add_argument('--num-workers', '-j', dest='num_workers', type=int,
                        default=4, help='Number of data workers, you can use larger '
                        'number to accelerate data loading, if you CPU and GPUs are powerful.')
    parser.add_argument('--gpus', type=str, default='0',
                        help='Training with GPUs, you can specify 1,3 for example.')
    parser.add_argument('--epochs', type=str, default='',
                        help='Training epochs.')
    parser.add_argument('--resume', type=str, default='',
                        help='Resume from previously saved parameters if not None. '
                        'For example, you can resume from ./faster_rcnn_xxx_0123.params')
    parser.add_argument('--start-epoch', type=int, default=0,
                        help='Starting epoch for resuming, default is 0 for new training.'
                        'You can specify it to 100 for example to start from 100 epoch.')
    parser.add_argument('--lr', type=str, default='',
                        help='Learning rate, default is 0.001 for voc single gpu training.')
    parser.add_argument('--lr-decay', type=float, default=0.1,
                        help='decay rate of learning rate. default is 0.1.')
    parser.add_argument('--lr-decay-epoch', type=str, default='',
                        help='epoches at which learning rate decays. default is 14,20 for voc.')
    parser.add_argument('--lr-warmup', type=str, default='',
                        help='warmup iterations to adjust learning rate, default is 0 for voc.')
    parser.add_argument('--momentum', type=float, default=0.9,
                        help='SGD momentum, default is 0.9')
    parser.add_argument('--wd', type=str, default='',
                        help='Weight decay, default is 5e-4 for voc')
    parser.add_argument('--log-interval', type=int, default=100,
                        help='Logging mini-batch interval. Default is 100.')
    parser.add_argument('--save-prefix', type=str, default='',
                        help='Saving parameter prefix')
    parser.add_argument('--save-interval', type=int, default=1,
                        help='Saving parameters epoch interval, best model will always be saved.')
    parser.add_argument('--val-interval', type=int, default=1,
                        help='Epoch interval for validation, increase the number will reduce the '
                             'training time if validation is slow.')
    parser.add_argument('--seed', type=int, default=233,
                        help='Random seed to be fixed.')
    parser.add_argument('--verbose', dest='verbose', action='store_true',
                        help='Print helpful debugging info once set.')
    parser.add_argument('--mixup', action='store_true', help='Use mixup training.')
    parser.add_argument('--no-mixup-epochs', type=int, default=20,
                        help='Disable mixup training if enabled in the last N epochs.')
    args = parser.parse_args()
    if args.dataset == 'voc' or args.dataset == 'pedestrian':
        args.epochs = int(args.epochs) if args.epochs else 20
        args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '14,20'
        args.lr = float(args.lr) if args.lr else 0.001
        args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
        args.wd = float(args.wd) if args.wd else 5e-4
    elif args.dataset == 'coco':
        args.epochs = int(args.epochs) if args.epochs else 26
        args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '17,23'
        args.lr = float(args.lr) if args.lr else 0.00125
        args.lr_warmup = args.lr_warmup if args.lr_warmup else 8000
        args.wd = float(args.wd) if args.wd else 1e-4
        num_gpus = len(args.gpus.split(','))
        if num_gpus == 1:
            args.lr_warmup = -1
        else:
            args.lr *=  num_gpus
            args.lr_warmup /= num_gpus
    return args


class RPNAccMetric(mx.metric.EvalMetric):
    def __init__(self):
        super(RPNAccMetric, self).__init__('RPNAcc')

    def update(self, labels, preds):
        # label: [rpn_label, rpn_weight]
        # preds: [rpn_cls_logits]
        rpn_label, rpn_weight = labels
        rpn_cls_logits = preds[0]

        # calculate num_inst (average on those fg anchors)
        num_inst = mx.nd.sum(rpn_weight)

        # cls_logits (b, c, h, w) red_label (b, 1, h, w)
        # pred_label = mx.nd.argmax(rpn_cls_logits, axis=1, keepdims=True)
        pred_label = mx.nd.sigmoid(rpn_cls_logits) >= 0.5
        # label (b, 1, h, w)
        num_acc = mx.nd.sum((pred_label == rpn_label) * rpn_weight)

        self.sum_metric += num_acc.asscalar()
        self.num_inst += num_inst.asscalar()


class RPNL1LossMetric(mx.metric.EvalMetric):
    def __init__(self):
        super(RPNL1LossMetric, self).__init__('RPNL1Loss')

    def update(self, labels, preds):
        # label = [rpn_bbox_target, rpn_bbox_weight]
        # pred = [rpn_bbox_reg]
        rpn_bbox_target, rpn_bbox_weight = labels
        rpn_bbox_reg = preds[0]

        # calculate num_inst (average on those fg anchors)
        num_inst = mx.nd.sum(rpn_bbox_weight) / 4

        # calculate smooth_l1
        loss = mx.nd.sum(rpn_bbox_weight * mx.nd.smooth_l1(rpn_bbox_reg - rpn_bbox_target, scalar=3))

        self.sum_metric += loss.asscalar()
        self.num_inst += num_inst.asscalar()


class RCNNAccMetric(mx.metric.EvalMetric):
    def __init__(self):
        super(RCNNAccMetric, self).__init__('RCNNAcc')

    def update(self, labels, preds):
        # label = [rcnn_label]
        # pred = [rcnn_cls]
        rcnn_label = labels[0]
        rcnn_cls = preds[0]

        # calculate num_acc
        pred_label = mx.nd.argmax(rcnn_cls, axis=-1)
        num_acc = mx.nd.sum(pred_label == rcnn_label)

        self.sum_metric += num_acc.asscalar()
        self.num_inst += rcnn_label.size


class RCNNL1LossMetric(mx.metric.EvalMetric):
    def __init__(self):
        super(RCNNL1LossMetric, self).__init__('RCNNL1Loss')

    def update(self, labels, preds):
        # label = [rcnn_bbox_target, rcnn_bbox_weight]
        # pred = [rcnn_reg]
        rcnn_bbox_target, rcnn_bbox_weight = labels
        rcnn_bbox_reg = preds[0]

        # calculate num_inst
        num_inst = mx.nd.sum(rcnn_bbox_weight) / 4

        # calculate smooth_l1
        loss = mx.nd.sum(rcnn_bbox_weight * mx.nd.smooth_l1(rcnn_bbox_reg - rcnn_bbox_target, scalar=1))

        self.sum_metric += loss.asscalar()
        self.num_inst += num_inst.asscalar()

def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        #print(val_dataset.classes)
        #('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')

        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    elif dataset.lower() == 'pedestrian':
        lst_dataset = LstDetection('train_val.lst',root=os.path.expanduser('.'))
        print(len(lst_dataset))
        first_img = lst_dataset[0][0]

        print(first_img.shape)
        print(lst_dataset[0][1])
        
        train_dataset = LstDetection('train.lst',root=os.path.expanduser('.'))
        val_dataset = LstDetection('val.lst',root=os.path.expanduser('.'))
        classs = ('pedestrian',)
        val_metric = VOC07MApMetric(iou_thresh=0.5,class_names=classs)
        
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.mixup:
        from gluoncv.data.mixup import MixupDetection
        train_dataset = MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric

def get_dataloader(net, train_dataset, val_dataset, batch_size, num_workers):
    """Get dataloader."""
    train_bfn = batchify.Tuple(*[batchify.Append() for _ in range(5)])
    train_loader = mx.gluon.data.DataLoader(
        train_dataset.transform(FasterRCNNDefaultTrainTransform(net.short, net.max_size, net)),
        batch_size, True, batchify_fn=train_bfn, last_batch='rollover', num_workers=num_workers)
    val_bfn = batchify.Tuple(*[batchify.Append() for _ in range(3)])
    val_loader = mx.gluon.data.DataLoader(
        val_dataset.transform(FasterRCNNDefaultValTransform(net.short, net.max_size)),
        batch_size, False, batchify_fn=val_bfn, last_batch='keep', num_workers=num_workers)
    return train_loader, val_loader

def save_params(net, logger, best_map, current_map, epoch, save_interval, prefix):
    current_map = float(current_map)
    if current_map > best_map[0]:
        logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format(
                    epoch, current_map, best_map, '{:s}_best.params'.format(prefix)))
        best_map[0] = current_map
        net.save_parameters('{:s}_best.params'.format(prefix))
        with open(prefix+'_best_map.log', 'a') as f:
            f.write('{:04d}:\t{:.4f}\n'.format(epoch, current_map))
    if save_interval and (epoch + 1) % save_interval == 0:
        logger.info('[Epoch {}] Saving parameters to {}'.format(
            epoch, '{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)))
        net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map))

def split_and_load(batch, ctx_list):
    """Split data to 1 batch each device."""
    num_ctx = len(ctx_list)
    new_batch = []
    for i, data in enumerate(batch):
        new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
        new_batch.append(new_data)
    return new_batch

def validate(net, val_data, ctx, eval_metric):
    """Test on validation dataset."""
    clipper = gcv.nn.bbox.BBoxClipToImage()
    eval_metric.reset()
    net.hybridize(static_alloc=True)
    for batch in val_data:
        batch = split_and_load(batch, ctx_list=ctx)
        det_bboxes = []
        det_ids = []
        det_scores = []
        gt_bboxes = []
        gt_ids = []
        gt_difficults = []
        for x, y, im_scale in zip(*batch):
            # get prediction results
            ids, scores, bboxes = net(x)
            det_ids.append(ids)
            det_scores.append(scores)
            # clip to image size
            det_bboxes.append(clipper(bboxes, x))
            # rescale to original resolution
            im_scale = im_scale.reshape((-1)).asscalar()
            det_bboxes[-1] *= im_scale
            # split ground truths
            gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
            gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
            gt_bboxes[-1] *= im_scale
            gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None)

        # update metric
        for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults):
            eval_metric.update(det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff)
    return eval_metric.get()

def get_lr_at_iter(alpha):
    return 1. / 3. * (1 - alpha) + alpha

def train(net, train_data, val_data, eval_metric, ctx, args):
    """Training pipeline"""
    net.collect_params().setattr('grad_req', 'null')
    net.collect_train_params().setattr('grad_req', 'write')
    trainer = gluon.Trainer(
        net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
        'sgd',
        {'learning_rate': args.lr,
         'wd': args.wd,
         'momentum': args.momentum,
         'clip_gradient': 5})

    # lr decay policy
    lr_decay = float(args.lr_decay)
    lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
    lr_warmup = float(args.lr_warmup)  # avoid int division

    # TODO(zhreshold) losses?
    rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
    rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1/9.)  # == smoothl1
    rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
    rcnn_box_loss = mx.gluon.loss.HuberLoss()  # == smoothl1
    metrics = [mx.metric.Loss('RPN_Conf'),
               mx.metric.Loss('RPN_SmoothL1'),
               mx.metric.Loss('RCNN_CrossEntropy'),
               mx.metric.Loss('RCNN_SmoothL1'),]

    rpn_acc_metric = RPNAccMetric()
    rpn_bbox_metric = RPNL1LossMetric()
    rcnn_acc_metric = RCNNAccMetric()
    rcnn_bbox_metric = RCNNL1LossMetric()
    metrics2 = [rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric]

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_file_path = args.save_prefix + '_train.log'
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info(args)
    if args.verbose:
        logger.info('Trainable parameters:')
        logger.info(net.collect_train_params().keys())
    logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
    best_map = [0]
    for epoch in range(args.start_epoch, args.epochs):
        mix_ratio = 1.0
        if args.mixup:
            # TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
            train_data._dataset.set_mixup(np.random.uniform, 0.5, 0.5)
            mix_ratio = 0.5
            if epoch >= args.epochs - args.no_mixup_epochs:
                train_data._dataset.set_mixup(None)
                mix_ratio = 1.0
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
            logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
        for metric in metrics:
            metric.reset()
        tic = time.time()
        btic = time.time()
        net.hybridize(static_alloc=True)
        base_lr = trainer.learning_rate
        for i, batch in enumerate(train_data):
            if epoch == 0 and i <= lr_warmup:
                # adjust based on real percentage
                new_lr = base_lr * get_lr_at_iter(i / lr_warmup)
                if new_lr != trainer.learning_rate:
                    if i % args.log_interval == 0:
                        logger.info('[Epoch 0 Iteration {}] Set learning rate to {}'.format(i, new_lr))
                    trainer.set_learning_rate(new_lr)
            batch = split_and_load(batch, ctx_list=ctx)
            batch_size = len(batch[0])
            losses = []
            metric_losses = [[] for _ in metrics]
            add_losses = [[] for _ in metrics2]
            with autograd.record():
                for data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks in zip(*batch):
                    gt_label = label[:, :, 4:5]
                    gt_box = label[:, :, :4]
                    cls_pred, box_pred, roi, samples, matches, rpn_score, rpn_box, anchors = net(data, gt_box)
                    # losses of rpn
                    rpn_score = rpn_score.squeeze(axis=-1)
                    num_rpn_pos = (rpn_cls_targets >= 0).sum()
                    rpn_loss1 = rpn_cls_loss(rpn_score, rpn_cls_targets, rpn_cls_targets >= 0) * rpn_cls_targets.size / num_rpn_pos
                    rpn_loss2 = rpn_box_loss(rpn_box, rpn_box_targets, rpn_box_masks) * rpn_box.size / num_rpn_pos
                    # rpn overall loss, use sum rather than average
                    rpn_loss = rpn_loss1 + rpn_loss2
                    # generate targets for rcnn
                    cls_targets, box_targets, box_masks = net.target_generator(roi, samples, matches, gt_label, gt_box)
                    # losses of rcnn
                    num_rcnn_pos = (cls_targets >= 0).sum()
                    rcnn_loss1 = rcnn_cls_loss(cls_pred, cls_targets, cls_targets >= 0) * cls_targets.size / cls_targets.shape[0] / num_rcnn_pos
                    rcnn_loss2 = rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / box_pred.shape[0] / num_rcnn_pos
                    rcnn_loss = rcnn_loss1 + rcnn_loss2
                    # overall losses
                    losses.append(rpn_loss.sum() * mix_ratio + rcnn_loss.sum() * mix_ratio)
                    metric_losses[0].append(rpn_loss1.sum() * mix_ratio)
                    metric_losses[1].append(rpn_loss2.sum() * mix_ratio)
                    metric_losses[2].append(rcnn_loss1.sum() * mix_ratio)
                    metric_losses[3].append(rcnn_loss2.sum() * mix_ratio)
                    add_losses[0].append([[rpn_cls_targets, rpn_cls_targets>=0], [rpn_score]])
                    add_losses[1].append([[rpn_box_targets, rpn_box_masks], [rpn_box]])
                    add_losses[2].append([[cls_targets], [cls_pred]])
                    add_losses[3].append([[box_targets, box_masks], [box_pred]])
                autograd.backward(losses)
                for metric, record in zip(metrics, metric_losses):
                    metric.update(0, record)
                for metric, records in zip(metrics2, add_losses):
                    for pred in records:
                        metric.update(pred[0], pred[1])
            trainer.step(batch_size)
            # update metrics
            if args.log_interval and not (i + 1) % args.log_interval:
                # msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
                msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics + metrics2])
                logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.format(
                    epoch, i, args.log_interval * batch_size/(time.time()-btic), msg))
                btic = time.time()

        msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
        logger.info('[Epoch {}] Training cost: {:.3f}, {}'.format(
            epoch, (time.time()-tic), msg))
#         if not (epoch + 1) % args.val_interval:
            
#             # consider reduce the frequency of validation to save time
#             map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
#             val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)])
            
            
            
#             logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg))
#             current_map = float(mean_ap[-1])
#         else:
#             current_map = 0.
        current_map = 0
        save_params(net, logger, best_map, current_map, epoch, args.save_interval, args.save_prefix)

if __name__ == '__main__':
    args = parse_args()
    # fix seed for mxnet, numpy and python builtin random generator.
    gutils.random.seed(args.seed)

    # training contexts
    ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
    ctx = ctx if ctx else [mx.cpu()]
    args.batch_size = len(ctx)  # 1 batch per device

    # network
    net_name = '_'.join(('faster_rcnn', args.network, args.dataset))
    args.save_prefix += net_name
    net = get_model(net_name, pretrained_base=True)
    if args.resume.strip():
        net.load_parameters(args.resume.strip())
    else:
        for param in net.collect_params().values():
            if param._data is not None:
                continue
            param.initialize()
    net.collect_params().reset_ctx(ctx)

    # training data
    train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
    train_data, val_data = get_dataloader(
        net, train_dataset, val_dataset, args.batch_size, args.num_workers)

    # training
    train(net, train_data, val_data, eval_metric, ctx, args)
View Code

 

检测部分,是在demo 下修改的,填了几个参数,可以用lst文件遍历了,用cv2画图,不用那个matplotlib了

"""Faster RCNN Demo script."""
import os
import argparse
import mxnet as mx
import gluoncv as gcv
from gluoncv.data.transforms import presets
from matplotlib import pyplot as plt
import cv2

font = cv2.FONT_HERSHEY_SIMPLEX

def parse_args():
    parser = argparse.ArgumentParser(description='Test with Faster RCNN networks.')
    parser.add_argument('--network', type=str, default='faster_rcnn_resnet50_v1b_coco',
                        help="Faster RCNN full network name")
    parser.add_argument('--images', type=str, default='',
                        help='Test images, use comma to split multiple.')
    parser.add_argument('--gpus', type=str, default='',
                        help='Training with GPUs, you can specify 1,3 for example.')
    parser.add_argument('--pretrained', type=str, default='True',
                        help='Load weights from previously saved parameters. You can specify parameter file name.')
    parser.add_argument('--thresh', type=float, default=0.5,
                        help='Threshold of object score when visualize the bboxes.')
    # add_lst
    parser.add_argument('--lst', type=str,default='',help="predict's lst file")
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = parse_args()
    # context list
    ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
    ctx = [mx.cpu()] if not ctx else ctx

    # grab some image if not specified
    if not args.images.strip() and args.lst=='':
        gcv.utils.download('https://github.com/dmlc/web-data/blob/master/' +
                           'gluoncv/detection/biking.jpg?raw=true', 'biking.jpg')
        image_list = ['biking.jpg']
    else:
        image_list = [x.strip() for x in args.images.split(',') if x.strip()]
    
    cnt = 0
    if args.lst!='':
        print(args.lst)
        file = open('val_front_0913.lst')
        image_list = []
        for line in file:
            line = line.split('\t')
            print('/mnt/hdfs-data-4/data/jian.yin/val_front_0913/'+line[-1][:-1])
            image_list.append('/mnt/hdfs-data-4/data/jian.yin/val_front_0913/'+line[-1][:-1])
            cnt+=1
        print 'sum of pic ',cnt
    
    if args.pretrained.lower() in ['true', '1', 'yes', 't']:
        net = gcv.model_zoo.get_model(args.network, pretrained=True)
    else:
        net = gcv.model_zoo.get_model(args.network, pretrained=False, pretrained_base=False)
        net.load_parameters(args.pretrained)
    net.set_nms(0.3, 200)
    net.collect_params().reset_ctx(ctx = ctx)

    ax = None
    
    # write plt.txt
    fw = open('draw/plt.txt','w')
    dict = {}
    cnt1 = 0
    for image in image_list:
        dict['url'] = image
        bbox_list = []
        x, img = presets.rcnn.load_test(image, short=net.short, max_size=net.max_size)
        img_h = img.shape[0]
        img_w = img.shape[1]
        
        x = x.as_in_context(ctx[0])
        ids, scores, bboxes = [xx[0].asnumpy() for xx in net(x)]

        original_img = cv2.imread(image)
        original_img_h = original_img.shape[0]
        original_img_w = original_img.shape[1]
        
        for i in range(scores.shape[0]):
            if scores[i] > args.thresh:
                x1 = int(bboxes[i][0]*original_img_h/img_h)
                y1 = int(bboxes[i][1]*original_img_w/img_w)
                x2 = int(bboxes[i][2]*original_img_h/img_h)
                y2 = int(bboxes[i][3]*original_img_w/img_w)
                
                bbox_list.append((float(scores[i]),x1,y1,x2,y2))
        dict['bbox'] = bbox_list
        fw.write(str(dict)+'\n')
        cnt1+=1
        print 'The last ',cnt-cnt1
    fw.close()
#                 cv2.rectangle(original_img, (x1, y1), (x2, y2), (255,0,0), 3)
#                 cv2.putText(original_img,'person '+str(scores[i]),(x1,y1),font,0.5,(255,0,0),2)
#                 cv2.imwrite('draw/'+str(cnt)+'.jpg', original_img)
                
        
        
#         print(bboxes)
#         ax = gcv.utils.viz.plot_bbox(img, bboxes, scores, ids, thresh=args.thresh,
#                                      class_names=net.classes, ax=ax)
#         plt.savefig(str(cnt)+'predict.jpg')
#         cnt+=1
#         plt.show()

把得分情况,锚框位置都写在文件里了,不用每次跑模型来得到,想怎么都可以了。plt.py

import cv2
import os
font = cv2.FONT_HERSHEY_SIMPLEX

file = open('plt.txt')
cnt = 1
for line in file:
    dict = eval(line)
    url = dict['url']
    bbox = dict['bbox']
    img = cv2.imread(url)
    for i in range(len(bbox)):
        score = bbox[i][0]
        score = '%.2f' % score
        x1 = bbox[i][1]
        y1 = bbox[i][2]
        x2 = bbox[i][3]
        y2 = bbox[i][4]
        cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 3)
        cv2.putText(img,'person '+str(score),(x1,y1),font,0.5,(255,0,0),2)
    url = url.split('/')
    x_url = url[5]+'/'+url[6]+'/'+url[7]+'/'+url[8]
    if not os.path.exists(url[5]+'/'+url[6]+'/'+url[7]+'/'):
        os.makedirs(url[5]+'/'+url[6]+'/'+url[7]+'/')
    cv2.imwrite(x_url, img)
    print('The last ',6137-cnt)
    cnt+=1

 

posted @ 2018-12-26 17:49  小草的大树梦  阅读(2597)  评论(0编辑  收藏  举报