LeNet
import mxnet as mx import sys from mxnet import autograd,nd from mxnet import gluon,init from mxnet.gluon import nn,loss as gloss from mxnet.gluon import data as gdata # 读取数据 mnist_train = gdata.vision.FashionMNIST(train=True) mnist_test = gdata.vision.FashionMNIST(train=False) batch_size = 256 trainsformer = gdata.vision.transforms.ToTensor() if sys.platform.startswith('win'): num_workers = 0 else: num_workers = 4 train_iter = gdata.DataLoader(mnist_train.transform_first(trainsformer),batch_size=batch_size,shuffle=True,num_workers=num_workers) test_iter = gdata.DataLoader(mnist_test.transform_first(trainsformer),batch_size=batch_size,shuffle=False,num_workers=num_workers) # 使用GPU def try_gpu(): try: ctx = mx.gpu() _ = nd.zeros((1,),ctx=ctx) except mx.base.MXNetError: ctx = mx.cpu() return ctx # 计算正确率 def accuracy(y_hat,y): return (y_hat.argmax(axis=1)==y.astype('float32').mean().asscalar()) def evaluate_accuracy(data_iter,net,ctx): acc = nd.array([0],ctx=ctx) for X,y in data_iter: X = X.as_in_context(ctx) y = y.as_in_context(ctx) acc += accuracy(net(X),y) return acc.asscalar() / len(data_iter) # LeNet,建立卷积神经网络 net = nn.Sequential() net.add(nn.Conv2D(channels=6, kernel_size=5, activation='sigmoid'), nn.MaxPool2D(pool_size=2, strides=2), nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'), nn.MaxPool2D(pool_size=2, strides=2), # Dense 会默认将(批量大小,通道,高,宽)形状的输入转换成 # (批量大小,通道 * 高 * 宽)形状的输入。 nn.Dense(120, activation='sigmoid'), nn.Dense(84, activation='sigmoid'), nn.Dense(10)) X = nd.random.uniform(shape=(1,1,28,28)) net.initialize() for layer in net: X = layer(X) print(layer.name,'output shape:\t',X.shape) K = nd.array([[[0, 1], [2, 3]], [[1, 2], [3, 4]]]) K = nd.stack(K, K + 1, K + 2) print(K)