LeetCode 36. 车的可用捕获量

题目描述

在一个 8 x 8 的棋盘上,有一个白色车(rook)。也可能有空方块,白色的象(bishop)和黑色的卒(pawn)。它们分别以字符 “R”,“.”,“B” 和 “p” 给出。大写字符表示白棋,小写字符表示黑棋。

车按国际象棋中的规则移动:它选择四个基本方向中的一个(北,东,西和南),然后朝那个方向移动,直到它选择停止、到达棋盘的边缘或移动到同一方格来捕获该方格上颜色相反的卒。另外,车不能与其他友方(白色)象进入同一个方格。

返回车能够在一次移动中捕获到的卒的数量。
 

示例 1:

输入:

[[".",".",".",".",".",".",".","."],

[".",".",".","p",".",".",".","."],

[".",".",".","R",".",".",".","p"],

[".",".",".",".",".",".",".","."],

[".",".",".",".",".",".",".","."],

[".",".",".","p",".",".",".","."],

[".",".",".",".",".",".",".","."],

[".",".",".",".",".",".",".","."]]
输出:3
解释:
在本例中,车能够捕获所有的卒。


示例 2:

 

输入:

[[".",".",".",".",".",".",".","."],

[".","p","p","p","p","p",".","."],

[".","p","p","B","p","p",".","."],

[".","p","B","R","B","p",".","."],

[".","p","p","B","p","p",".","."],

[".","p","p","p","p","p",".","."],

[".",".",".",".",".",".",".","."],

[".",".",".",".",".",".",".","."]]

输出:0
解释:
象阻止了车捕获任何卒。


示例 3:

 

输入:

[[".",".",".",".",".",".",".","."],

[".",".",".","p",".",".",".","."],

[".",".",".","p",".",".",".","."]

,["p","p",".","R",".","p","B","."],

[".",".",".",".",".",".",".","."],

[".",".",".","B",".",".",".","."],

[".",".",".","p",".",".",".","."],

[".",".",".",".",".",".",".","."]]

输出:3
解释:
车可以捕获位置 b5,d6 和 f5 的卒。
 

提示:

board.length == board[i].length == 8
board[i][j] 可以是 'R','.','B' 或 'p'
只有一个格子上存在 board[i][j] == 'R'

 

解题思路

遍历棋盘,找到车的位置

以车为中心

上下左右移动,

遇到卒,res++,再break;

遇到象,直接break;

代码如下

public class NumRookCaptures {
      public int numRookCaptures(char[][] board) {
            // 定义上下左右四个方向
            int[] dx = {-1, 1, 0, 0};
            int[] dy = {0, 0, -1, 1};
           
            for (int i = 0; i < 8; i++) {
                for (int j = 0; j < 8; j++) {
                    // 找到白车所在的位置
                    if (board[i][j] == 'R') {
                        // 分别判断白车的上、下、左、右四个方向
                        int res = 0;
                        for (int k = 0; k < 4; k++) {
                            int x = i, y = j;
                            while (true) {
                                x += dx[k];
                                y += dy[k];
                                if (x < 0 || x >= 8 || y < 0 || y >= 8 || board[x][y] == 'B') {
                                    break;
                                }
                                if (board[x][y] == 'p') {
                                    res++;
                                    break;
                                }
                            }
                        }
                        return res;
                    }
                }
            }
            return 0;
        }
}

 

posted @ 2020-03-26 13:56  Transkai  阅读(188)  评论(0编辑  收藏  举报