一、 以编程方式执行Spark SQL查询
1. 编写Spark SQL程序实现RDD转换成DataFrame
前面我们学习了如何在Spark Shell中使用SQL完成查询,现在我们通过IDEA编写Spark SQL查询程序。
Spark官网提供了两种方法来实现从RDD转换得到DataFrame,第一种方法是利用反射机制,推导包含某种类型的RDD,通过反射将其转换为指定类型的DataFrame,适用于提前知道RDD的schema。第二种方法通过编程接口与RDD进行交互获取schema,并动态创建DataFrame,在运行时决定列及其类型。
首先在maven项目的pom.xml中添加Spark SQL的依赖。
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.3</version>
</dependency>
|
1.1. 通过反射推断Schema
Scala支持使用case class类型导入RDD转换为DataFrame,通过case class创建schema,case class的参数名称会被利用反射机制作为列名。这种RDD可以高效的转换为DataFrame并注册为表。
代码如下:
Java版本
package com.hzk.sparksql;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.ForeachFunction; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SaveMode; import org.apache.spark.sql.SparkSession;
import java.io.Serializable;
public class ReflectTransform {
public static void main(String[] args) { SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate(); JavaRDD<String> lines=spark.read().textFile("D:\\Bigdata\\20.sparksql\\2、以编程方式执行sparksql\\person.txt").javaRDD();
JavaRDD<Person> rowRDD = lines.map(line -> { String parts[] = line.split(" "); return new Person(Integer.valueOf(parts[0]),parts[1],Integer.valueOf(parts[2])); });
Dataset<Row> df = spark.createDataFrame(rowRDD, Person.class); // df.select("id", "name", "age"). // coalesce(1).write().mode(SaveMode.Append).parquet("parquet.res"); df.foreach(new ForeachFunction<Row>() { @Override public void call(Row row) throws Exception { System.out.println("id:"+row.get(0)+",name:"+row.get(1)+",age:"+row.get(2)); } }); }
static class Person implements Serializable { private int id; private String name; private int age;
public int getId() { return id; }
public void setId(int id) { this.id = id; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
public int getAge() { return age; }
public void setAge(int age) { this.age = age; }
public Person(int id, String name, int age) { this.id = id; this.name = name; this.age = age;
} } }
|
Scala版本
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}
/**
* RDD转化成DataFrame:利用反射机制
*/
//todo:定义一个样例类Person
case class Person(id:Int,name:String,age:Int)
object CaseClassSchema {
def main(args: Array[String]): Unit = {
//todo:1、构建sparkSession 指定appName和master的地址
val spark: SparkSession = SparkSession.builder()
.appName("CaseClassSchema")
.master("local[2]").getOrCreate()
//todo:2、从sparkSession获取sparkContext对象
val sc: SparkContext = spark.sparkContext
sc.setLogLevel("WARN")//设置日志输出级别
//todo:3、加载数据
val dataRDD: RDD[String] = sc.textFile("D:\\person.txt")
//todo:4、切分每一行记录
val lineArrayRDD: RDD[Array[String]] = dataRDD.map(_.split(" "))
//todo:5、将RDD与Person类关联
val personRDD: RDD[Person] = lineArrayRDD.map(x=>Person(x(0).toInt,x(1),x(2).toInt))
//todo:6、创建dataFrame,需要导入隐式转换
import spark.implicits._
val personDF: DataFrame = personRDD.toDF()
//todo-------------------DSL语法操作 start--------------
//1、显示DataFrame的数据,默认显示20行
personDF.show()
//2、显示DataFrame的schema信息
personDF.printSchema()
//3、显示DataFrame记录数
println(personDF.count())
//4、显示DataFrame的所有字段
personDF.columns.foreach(println)
//5、取出DataFrame的第一行记录
println(personDF.head())
//6、显示DataFrame中name字段的所有值
personDF.select("name").show()
//7、过滤出DataFrame中年龄大于30的记录
personDF.filter($"age" > 30).show()
//8、统计DataFrame中年龄大于30的人数
println(personDF.filter($"age">30).count())
//9、统计DataFrame中按照年龄进行分组,求每个组的人数
personDF.groupBy("age").count().show()
//todo-------------------DSL语法操作 end-------------
//todo--------------------SQL操作风格 start-----------
//todo:将DataFrame注册成表
personDF.createOrReplaceTempView("t_person")
//todo:传入sql语句,进行操作
spark.sql("select * from t_person").show()
spark.sql("select * from t_person where name='zhangsan'").show()
spark.sql("select * from t_person order by age desc").show()
//todo--------------------SQL操作风格 end-------------
sc.stop()
spark.stop()
}
}
|
1.2. 通过StructType直接指定Schema
当case class不能提前定义好时,可以通过以下三步创建DataFrame
(1)将RDD转为包含Row对象的RDD
(2)基于StructType类型创建schema,与第一步创建的RDD相匹配
(3)通过sparkSession的createDataFrame方法对第一步的RDD应用schema创建DataFrame
Java版本
package com.hzk.sparksql;
import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FilterFunction; import org.apache.spark.api.java.function.ForeachFunction; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.*; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
import java.io.Serializable; import java.util.ArrayList;
public class DynamicTransform { public static void main(String[] args) {
SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate(); JavaRDD<String> lines=spark.read().textFile("D:\\Bigdata\\20.sparksql\\2、以编程方式执行sparksql\\person.txt").javaRDD();
JavaRDD<Row> personMaps=lines.map(new Function<String, Row>() { @Override public Row call(String s) throws Exception { String[] personString=s.split(" "); return RowFactory.create(Integer.valueOf(personString[0]),personString[1],Integer.valueOf(personString[2])); } }); ArrayList<StructField> fields = new ArrayList<StructField>(); StructField field = null; field = DataTypes.createStructField("id", DataTypes.IntegerType, true); fields.add(field); field = DataTypes.createStructField("name", DataTypes.StringType, true); fields.add(field); field = DataTypes.createStructField("age", DataTypes.IntegerType, true); fields.add(field);
StructType schema = DataTypes.createStructType(fields);
Dataset<Row> df = spark.createDataFrame(personMaps, schema); df.coalesce(1).write().mode(SaveMode.Append).parquet("parquet.res1"); df.foreach(new ForeachFunction<Row>() { @Override public void call(Row row) throws Exception { System.out.println("id:"+row.get(0)+",name:"+row.get(1)+",age:"+row.get(2)); } }); }
}
|
Scala版本
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
/**
* RDD转换成DataFrame:通过指定schema构建DataFrame
*/
object SparkSqlSchema {
def main(args: Array[String]): Unit = {
//todo:1、创建SparkSession,指定appName和master
val spark: SparkSession = SparkSession.builder()
.appName("SparkSqlSchema")
.master("local[2]")
.getOrCreate()
//todo:2、获取sparkContext对象
val sc: SparkContext = spark.sparkContext
//todo:3、加载数据
val dataRDD: RDD[String] = sc.textFile("d:\\person.txt")
//todo:4、切分每一行
val dataArrayRDD: RDD[Array[String]] = dataRDD.map(_.split(" "))
//todo:5、加载数据到Row对象中
val personRDD: RDD[Row] = dataArrayRDD.map(x=>Row(x(0).toInt,x(1),x(2).toInt))
//todo:6、创建schema
val schema:StructType= StructType(Seq(
StructField("id", IntegerType, false),
StructField("name", StringType, false),
StructField("age", IntegerType, false)
))
//todo:7、利用personRDD与schema创建DataFrame
val personDF: DataFrame = spark.createDataFrame(personRDD,schema)
//todo:8、DSL操作显示DataFrame的数据结果
personDF.show()
//todo:9、将DataFrame注册成表
personDF.createOrReplaceTempView("t_person")
//todo:10、sql语句操作
spark.sql("select * from t_person").show()
spark.sql("select count(*) from t_person").show()
sc.stop()
spark.stop()
}
}
|
2. 编写Spark SQL程序操作HiveContext
HiveContext是对应spark-hive这个项目,与hive有部分耦合, 支持hql,是SqlContext的子类,在Spark2.0之后,HiveContext和SqlContext在SparkSession进行了统一,可以通过操作SparkSession来操作HiveContext和SqlContext。
2.1. 添加pom依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.1.3</version>
</dependency>
|
2.2. 代码实现
package gec.sql
import org.apache.spark.sql.SparkSession
/**
* todo:Sparksql操作hive的sql
*/
object HiveSupport {
def main(args: Array[String]): Unit = {
//todo:1、创建sparkSession
val spark: SparkSession = SparkSession.builder()
.appName("HiveSupport")
.master("local[2]")
.config("spark.sql.warehouse.dir", "d:\\spark-warehouse")
.enableHiveSupport() //开启支持hive
.getOrCreate()
spark.sparkContext.setLogLevel("WARN") //设置日志输出级别
//todo:2、操作sql语句
spark.sql("CREATE TABLE IF NOT EXISTS person (id int, name string, age int) row format delimited fields terminated by ' '")
spark.sql("LOAD DATA LOCAL INPATH './data/student.txt' INTO TABLE person")
spark.sql("select * from person ").show()
spark.stop()
}
}
需要在当前项目下创建一个data目录,然后在data目录下创建一个student.txt数据文件。
|
3.编写Spark SQL程序操作Mysql
1. JDBC
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
1.1. SparkSql从MySQL中加载数据
1.1.1 通过IDEA编写SparkSql代码
Java版本
public static void dataFromMysql() { SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate(); Properties properties = new Properties(); properties.setProperty("user", "root"); properties.setProperty("password", "123456"); //todo:3、读取mysql中的数据 Dataset<Row> df = spark.read().jdbc("jdbc:mysql://localhost:3306/baidu", "student", properties); df.show(); }
|
Scala版本
package gec.sql
import java.util.Properties
import org.apache.spark.sql.{DataFrame, SparkSession}
/**
* todo:Sparksql从mysql中加载数据
*/
object DataFromMysql {
def main(args: Array[String]): Unit = {
//todo:1、创建sparkSession对象
val spark: SparkSession = SparkSession.builder()
.appName("DataFromMysql")
.master("local[2]")
.getOrCreate()
//todo:2、创建Properties对象,设置连接mysql的用户名和密码
val properties: Properties =new Properties()
properties.setProperty("user","root")
properties.setProperty("password","123456")
//todo:3、读取mysql中的数据
val mysqlDF: DataFrame = spark.read.jdbc("jdbc:mysql://192.168.200.100:3306/spark","iplocation",properties)
//todo:4、显示mysql中表的数据
mysqlDF.show()
spark.stop()
}
}
|
执行查看效果:
![](https://img2018.cnblogs.com/blog/1598493/201908/1598493-20190816153203915-1930050271.png)
1.1.2 通过spark-shell运行
(1)、启动spark-shell(必须指定mysql的连接驱动包)
spark-shell \
--master spark://node1:7077 \
--executor-memory 1g \
--total-executor-cores 2 \
--jars /export/servers/hive/lib/mysql-connector-java-5.1.35.jar \
--driver-class-path /export/servers/hive/lib/mysql-connector-java-5.1.35.jar
|
(2)、从mysql中加载数据
val mysqlDF = spark.read.format("jdbc").options(Map("url" -> "jdbc:mysql://192.168.200.100:3306/spark", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "iplocation", "user" -> "root", "password" -> "123456")).load()
|
(3)、执行查询
![](https://img2018.cnblogs.com/blog/1598493/201908/1598493-20190816153245162-772923551.png)
1.2. SparkSql将数据写入到MySQL中
1.2.1 通过IDEA编写SparkSql代码
(1)编写代码
Java版本
public static void sparkSqlToMysql() { SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate(); Properties properties = new Properties(); properties.setProperty("user", "root"); properties.setProperty("password", "123456"); JavaRDD<String> lines = spark.read().textFile("D:\\Bigdata\\20.sparksql\\2、以编程方式执行sparksql\\person.txt").javaRDD(); JavaRDD<Person> personRDD = lines.map(new Function<String, Person>() { @Override public Person call(String s) throws Exception { String[] strings = s.split(" "); return new Person(Integer.valueOf(strings[0]), strings[1], Integer.valueOf(strings[2])); } }); Dataset<Row> df = spark.createDataFrame(personRDD, Person.class); df.createOrReplaceTempView("person"); Dataset<Row> resultDF = spark.sql("select * from person order by age desc"); Properties properties1 = new Properties(); properties.setProperty("user", "root"); properties.setProperty("password", "123456"); resultDF.write().jdbc("jdbc:mysql://localhost:3306/baidu", "person", properties); spark.stop();
}
public static class Person implements Serializable { private int id; private String name; private int age;
public int getId() { return id; }
public void setId(int id) { this.id = id; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
public int getAge() { return age; }
public void setAge(int age) { this.age = age; }
public Person(int id, String name, int age) { this.id = id; this.name = name; this.age = age;
} }
|
Scala版本
package gec.sql
import java.util.Properties
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}
/**
* todo:sparksql写入数据到mysql中
*/
object SparkSqlToMysql {
def main(args: Array[String]): Unit = {
//todo:1、创建sparkSession对象
val spark: SparkSession = SparkSession.builder()
.appName("SparkSqlToMysql")
.getOrCreate()
//todo:2、读取数据
val data: RDD[String] = spark.sparkContext.textFile(args(0))
//todo:3、切分每一行,
val arrRDD: RDD[Array[String]] = data.map(_.split(" "))
//todo:4、RDD关联Student
val studentRDD: RDD[Student] = arrRDD.map(x=>Student(x(0).toInt,x(1),x(2).toInt))
//todo:导入隐式转换
import spark.implicits._
//todo:5、将RDD转换成DataFrame
val studentDF: DataFrame = studentRDD.toDF()
//todo:6、将DataFrame注册成表
studentDF.createOrReplaceTempView("student")
//todo:7、操作student表 ,按照年龄进行降序排列
val resultDF: DataFrame = spark.sql("select * from student order by age desc")
//todo:8、把结果保存在mysql表中
//todo:创建Properties对象,配置连接mysql的用户名和密码
val prop =new Properties()
prop.setProperty("user","root")
prop.setProperty("password","123456")
resultDF.write.jdbc("jdbc:mysql://192.168.200.150:3306/spark","student",prop)
//todo:写入mysql时,可以配置插入mode,overwrite覆盖,append追加,ignore忽略,error默认表存在报错
//resultDF.write.mode(SaveMode.Overwrite).jdbc("jdbc:mysql://192.168.200.150:3306/spark","student",prop)
spark.stop()
}
}
//todo:创建样例类Student
case class Student(id:Int,name:String,age:Int)
|
(2)用maven将程序打包
通过IDEA工具打包即可
(3)将Jar包提交到spark集群
spark-submit \
--class gec.sql.SparkSqlToMysql \
--master spark://node1:7077 \
--executor-memory 1g \
--total-executor-cores 2 \
--jars /export/servers/hive/lib/mysql-connector-java-5.1.35.jar \
--driver-class-path /export/servers/hive/lib/mysql-connector-java-5.1.35.jar \
/root/original-spark-2.0.2.jar /person.txt
|
(4)查看mysql中表的数据