Day15 T1 库特的向量

题目

  从前在一个美好的校园里,有一只(棵)可爱的弯枝理树。她内敛而羞涩,一副弱气的样子让人一看就想好好疼爱她。仅仅在她身边,就有许多女孩子想和她BH,比如铃,库特,等等。不过,除却巫山不是云,理树的心理只有那个帅气高大的男孩子——恭介,这让女孩子们不得不终日唉声叹气,以泪洗面。不过恭介是那样强大而完美,根本没有办法击败他,她们也只好咬牙忍痛度日,以待反击之时。
  终于,她们获得了一次机会。机智的库特利用弹道学、密码学、宇宙学的知识设计出了一个密室,可以让进入的人无法从内部打开出口。库特设计密码的过程很奇葩,是由两个用整数坐标表示的n 维向量导出的。神奇的是,对于这两个向量中的任意一个,无论如何将它的坐标打乱(例如(\(a_1\)\(a_2\)\(a_3\))变成(\(a_3\)\(a_1\)\(a_2\))),打乱后的数量积都不会比原来的两个向量的数量积小。而库特就把原来的两个向量的数量积作为了密码。现在她们只用把恭介引入就可以了。但是,好事多磨,由于她们的粗心大意,在测试密室的时候不小心把自己给关了进去,而且还带走了密码纸。在外面的铃只找到了库特写着两个打乱后的向量的草稿。哇呼~能不能解救这些萌妹子,就看你了。

输入

三行。
第一行一个整数N,表示N维。
第2~3行每行N个整数,表示打乱后的两个向量(\(a_1\)\(a_2\)\(a_3\)\(a_4\)\(a_n\)),(\(b_1\)\(b_2\)\(b_3\)\(b_4\)\(b_n\))。

题解

这一题其实和向量关系不大。因为乱后的数量积都不会比原来的两个向量的数量积小,由排序不等式知,顺序和\(\geqslant\)乱序和\(\geqslant\)逆序和,所以两向量原来的数量积应该是逆序和。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll ans=0;
ll a[1010],b[1010];

bool cmp(ll m,ll n){
    return m>n;
}

int main(){
	scanf("%d",&n);
    for(register int i=1;i<=n;++i) scanf("%lld",&a[i]);
    for(register int i=1;i<=n;++i) scanf("%lld",&b[i]);
    sort(a+1,a+n+1);
    sort(b+1,b+n+1,cmp);
    for(register int i=1;i<=n;++i){
        ans+=a[i]*b[i];
    }
    printf("%lld",ans);
    return 0;
}
posted @ 2020-01-22 17:46  东方澂  阅读(112)  评论(0编辑  收藏  举报