set in discrete math: naive set theory

key concept

set: a set is an unordered collection of objects. (It is not part of a formal theory of  sets)

This intuitive notation will lead to paradoxes, or logical inconsistencies.

naive set theory: not develop an axiomatic version of set theory.

set builder: the defination of belonging symbol

two sets are equal, A=B: if and only if they have the same elements. every element of A is also an element of B, and every element of B is also an element of A.

A is a subset of B: if and only if ervery element of A is also an element of B

A is a proper subset of B: if and only if A is a subset of B and A!=B

cardinality of set: if set A has finite number of elements, then the number is called cardinality of set A

the power set of A: the set of all subsets of A

cartesian product of A and B, A*B: is the set of all ordered pairs (a,b), where a belonging to A, and B belonging to B.

truth set of P: {x belongs to A | P(x)}, is a subset of A

union of A and B: {x| x belongs to A or x belongs to B}

intersection of A and B: {x| x belongs to A and x belongs to B}

difference of A and B, A-B: {x| x belongs to A and x doesn't belong to B}

complement of A: U-A, where U is the universal set

set identities: set equations no matter what set is, including distributive laws, De Morgan's law, and so on. They can be prooved by mathematic logic and definations of set

computer representation of sets: assume the universal set U is finite, set can be represented by bit string

 

 

 

 

posted on 2011-11-20 18:55  Torstan  阅读(251)  评论(0编辑  收藏  举报

导航