P3414 SAC#1 - 组合数
P3414 SAC#1 - 组合数
求 $$\sum_{i = 0,2 | i}{n}C_{n}$$ 其中 n <= 1 000 000 000 000 000 000 (10^18)
Solution
这题评级有毒吧。。码量少可是包含知识点和推导方法不简单的呀
推导才是精华
复习一下 二项式定理 :$$(a + b)^{n} = \sum_{k = 0}{n}C_{n}a{k}b$$
引理: $$\sum_{i = 0,2 | i}{n}C_{n} = 2^{n - 1}$$
证明:
将 \(a = 1, b = 1\) 带入二项式定理, 得①式:$$2^{n} = \sum_{i = 0}{n}C_{n}$$
将 \(a = -1, b = 1\) 带入二项式定理, 得②式: $$(1 - 1)^{n} = \sum_{i = 0, i % 2 == 0}{n}C_{n} - \sum_{i = 0, i % 2 == 1}{n}C_{n} = 0$$
①式 + ②式, 得③式: $$2\sum_{i = 0,2 | i}{n}C_{n} = 2^{n} + 0 = 2^{n}$$
解得:$$\sum_{i = 0,2 | i}{n}C_{n} = 2^{n - 1}$$
证毕。
快速幂解决问题
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL M = 6662333;
LL p;
LL Q_pow(LL a, LL p){
LL ret = 1;
while(p){
if(p & 1)ret = ret * a % M;
a = a * a % M;
p >>= 1;
}
return ret;
}
int main(){
p = RD();
printf("%lld\n", Q_pow(2, p - 1));
return 0;
}