POJ - 2976 Dropping tests && 0/1 分数规划
POJ - 2976 Dropping tests
你有 \(n\) 次考试成绩, 定义考试平均成绩为 $$\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} b_{i}}$$
你可以考虑放弃 \(K\) 次成绩, 求最大平均成绩 * 100
小插曲: 被精度卡成喜羊羊
0/1分数规划\(from\)人生导师
Solution
01分数规划(不是很)裸题, 在每次 \(check\) 时, 选取较大的 \(num - K + 1\) 次即可
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
using namespace std;
double RD(){
double out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019;
int num, K;
double a[maxn], b[maxn],c[maxn];
bool check(double k){
for(int i = 1;i <= num;i++){
c[i] = a[i] - b[i] * k;
}
sort(c + 1, c + 1 + num);
double temp = 0;
for(int i = num;i > K;i--)temp += c[i];
if(temp > 0)return 1;
return 0;
}
double search(double l, double r){
double ans;
while(r - l > 0.000000001){
double mid = (l + r) / 2;
if(check(mid))ans = mid, l = mid;
else r = mid;
}
return ans;
}
int main(){
while(1){
num = RD(), K = RD();
if(!num && !K)return 0;
for(int i = 1;i <= num;i++)a[i] = RD();
for(int i = 1;i <= num;i++)b[i] = RD();
printf("%.0f\n",100 * search(0, 1000000019));
}
}