题解 P4092 【[HEOI2016/TJOI2016]树】

参考了皎月半洒花的博客

看到树想到树剖,由于要取距自己到根离自己最近的标记点,刚开始想到线段树里存节点深度,查询时返回最大值。但是这样的话只能得到节点深度,无法得知节点编号,就想倍增乱搞一下,求出标记点,复杂度\(O(\log ^ {3}\;N)\)

虽然可以过但是实现有点复杂,就看了一下上面的博客

真的很强,由于树剖dfs时一条链上的编号是连续的,在此链中且深度越大线段树编号越大,所以我们可以在线段树里存当前节点的线段树编号,也达到了维护深度最大值的效果

答案就是ori [ (一条链中) MAX index] (ori为线段树编号回找树原始编号的数组)

复杂度\(O(\log ^ {2}\;N)\)

一直都是把树剖当板子用的,现在发现结合性质还有更多用处,我还要加油啊

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int RD(){
    int out = 0,flag = 1;char c = getchar();
    while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
    while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
    return flag * out;
    }
const int maxn = 1000019,INF = 1e9;
int num,na,nume,cnt;
int head[maxn];
struct Node{int v,nxt;}E[maxn * 2];
void add(int u,int v){
    E[++nume].nxt = head[u];
    E[nume].v = v;
    head[u] = nume;
    }
int size[maxn],wson[maxn],dep[maxn],fa[maxn],top[maxn],pos[maxn],ori[maxn];
int v[maxn];
void dfs1(int id,int F){
    size[id] = 1;
    for(int i = head[id];i;i = E[i].nxt){
        int v = E[i].v;
        if(v == F)continue;
        dep[v] = dep[id] + 1;
        fa[v] = id;
        dfs1(v,id);
        size[id] += size[v];
        if(size[v] > size[wson[id]])wson[id] = v;
        }
    }
void dfs2(int id,int TP){
    top[id] = TP;
    pos[id] = ++cnt;
    ori[cnt] = id;
    if(!wson[id])return ;
    dfs2(wson[id],TP);
    for(int i = head[id];i;i = E[i].nxt){
        int v = E[i].v;
        if(v == fa[id] || v == wson[id])continue;
        dfs2(v,v);
        }
    }
#define lid (id << 1)
#define rid (id << 1) | 1
struct sag_tree{
    int l,r,max;
    }tree[maxn << 2];
void build(int id,int l,int r){
    tree[id].l = l;
    tree[id].r = r;
    if(l == r){
        tree[id].max = 0;
        return ;
        }
    int mid = (l + r) >> 1;
    build(lid,l,mid);
    build(rid,mid + 1,r);
    tree[id].max = max(tree[lid].max,tree[rid].max);
    }
void update(int id,int val, int l,int r){
    if(tree[id].l == l && tree[id].r == r){
        tree[id].max = l;
        return ;
        }
    int mid = (tree[id].l + tree[id].r) >> 1;
    if(mid < l)update(rid,val,l,r);
    else if(mid >= r)update(lid,val,l,r);
    else update(lid,val,l,mid),update(rid,val,mid + 1,r);
    tree[id].max = max(tree[lid].max,tree[rid].max);
    }
int query(int id,int l,int r){
	if(tree[id].l == l && tree[id].r == r)return tree[id].max;
	int mid = (tree[id].l + tree[id].r) >> 1;
	if(mid < l)return query(rid,l,r);
	else if(mid >= r)return query(lid,l,r);
	else return max(query(lid,l,mid),query(rid,mid + 1,r));
	}
void Qmax(int x, int y){
	int ans = 0;
	while(top[x] != top[y]){
		if(dep[top[x]] < dep[top[y]])swap(x, y);
		ans = query(1, pos[top[x]], pos[x]);
		if(ans){
			printf("%d\n", ori[ans]);
			return ;
			}
		x = fa[top[x]];
		}
	if(dep[x] > dep[y])swap(x, y);
	ans = query(1, pos[x], pos[y]);
	printf("%d\n", ori[ans]);
	}
int main(){
	num = RD();na = RD();
	for(int i = 1;i <= num - 1;i++){
		int u = RD(),v = RD();
		add(u,v),add(v,u);
		}
	dep[1] = 1;
	dfs1(1,-1);dfs2(1,1);
	build(1,1,num);
	update(1,pos[1],pos[1],pos[1]);
	for(int i = 1;i <= na;i++){
		char cmd;cin>>cmd;
		if(cmd == 'C'){
			int x = RD();
			update(1,pos[x],pos[x],pos[x]);
			}
		else{
			int x = RD();
			Qmax(x,1);
			}
		}
	return 0;
	}
posted @ 2018-07-09 19:26  Tony_Double_Sky  阅读(179)  评论(0编辑  收藏  举报