洛谷P1226 【模板】快速幂

1.快速幂模板

前置知识

一个数字n,它的二进制位数一定是log2n向下取整+1;

快速幂模板代码

这段代码实现了快速幂算法(Exponentiation by squaring),用来计算 ( an ) 的值,其中 ( a ) 和 ( n ) 都是整数。

int quickpow(int a, int n)
{
int res = 1; // 初始化结果为1,因为任何数的0次幂都是1
while (n) { // 当指数n不为0时,继续执行循环
if (n & 1) // 如果n的最低位为1(即n是奇数)
res = res * a; // 将当前底数a乘到结果中
a = a * a; // 将底数a平方,相当于底数翻倍,指数减半
n >>= 1; // 将指数n右移一位,相当于将指数减半
}
return res; // 返回计算结果
}

现在逐句解析每一行代码的作用:

  1. int res = 1;

    • 初始化变量 res 为1,这是最终结果的初始值。任何数的0次幂都是1。
  2. while (n) {

    • 进入一个循环,条件是当指数 n 不为0时继续执行。循环将持续执行直到 n 变为0。
  3. if (n & 1)

    • 判断当前的指数 n 是否为奇数,使用位运算 n & 1 来判断。如果 n 的最低位(即最右边的二进制位)为1,则说明 n 是奇数。
  4. res = res * a;

    • 如果 n 是奇数,则将当前的底数 a 乘到结果 res 中。这步实现了快速幂算法中的乘法操作。
  5. a = a * a;

    • 然后将底数 a 自乘,即 a 变成 a^2。这一步相当于将底数翻倍,对应于指数减半的操作。
  6. n >>= 1;

    • 将指数 n 右移一位,即 n 变成 n / 2。这一步实现了快速幂算法中的指数减半操作。
  7. 循环回到第2步,直到 n 变为0,退出循环。

  8. return res;

    • 返回最终计算得到的结果 res,即底数 a 的指数 n 次幂的值。

这段代码利用了快速幂算法的思想,通过迭代和位运算的方式,将指数的计算复杂度从 ( O(n) ) 优化到 ( O(log n) ),显著提高了计算效率。

快速幂算法的形象解释

快速幂算法的例题

【模板】快速幂

题目描述

给你三个整数 a,b,p,求 abmodp

输入格式

输入只有一行三个整数,分别代表 a,b,p

输出格式

输出一行一个字符串 a^b mod p=s,其中 a,b,p 分别为题目给定的值, s 为运算结果。

样例 #1

样例输入 #1

2 10 9

样例输出 #1

2^10 mod 9=7

提示

样例解释

210=10241024mod9=7

数据规模与约定

对于 100% 的数据,保证 0a,b<231a+b>02p<231

答案

这题直接套用快速幂算法的模板,只需要每一步我们加上取模运算即可,注意数据需要开long long类型

#include<iostream>
using namespace std;
long long quickpow(long long a, long long n,long long p)
{
long long res = 1;
while (n) {
if (n & 1) res = (res * a)%p;
a = (a * a)%p;
n >>= 1;
}
return res;
}
int main()
{
long long a, b, p;
cin >> a >> b >> p;
printf("%lld^%lld mod %lld=%lld", a, b, p, quickpow(a, b, p));
return 0;
}
posted @   Tomorrowland_D  阅读(64)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 没有源码,如何修改代码逻辑?
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
点击右上角即可分享
微信分享提示