pat 1069. The Black Hole of Numbers (20)
1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:6767Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174Sample Input 2:
2222Sample Output 2:
2222 - 2222 = 0000
代码:
#include<iostream> #include<cstdlib> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int main() { int cnt=0,n,a[5],temp,num1,num2; scanf("%d",&n); int hhd=n; do { cnt=0; while(hhd) { a[cnt++]=hhd%10; hhd=hhd/10; } while(cnt<4) { a[cnt++]=0; } sort(a,a+cnt); if(a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3]) { printf("%d - %d = 0000",n,n); break; } num1=a[3]*1000+a[2]*100+a[1]*10+a[0]; num2=a[0]*1000+a[1]*100+a[2]*10+a[3]; cout<<a[3]<<a[2]<<a[1]<<a[0]<<" - "<<a[0]<<a[1]<<a[2]<<a[3]<<" = "; hhd=num1-num2; if(hhd>=1000&&hhd<=9999) cout<<num1-num2<<endl; else { if(hhd>=100&&hhd<=999) cout<<'0'<<hhd<<endl; if(hhd>=10&&hhd<=99) cout<<'00'<<hhd<<endl; if(hhd>=1&&hhd<=9) cout<<'000'<<hhd<<endl; } }while(hhd!=6174); }
版权声明:本文为博主原创文章,未经博主允许不得转载。
posted on 2015-07-24 15:17 Tob__yuhong 阅读(213) 评论(0) 编辑 收藏 举报