bzoj : 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 二分 + 网络流 + Floyd
1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛
Description
FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.
Input
* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.
Output
* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".
Sample Input
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120
Sample Output
110
思路:
我们先做一次最短路, 再二分, 对于每个mid ,我们只能连比它段的边, 从s到点连流量为牛数量的边, 从点到点连inf 从点到t连牛棚容量, 判断是否满流即可。
#include <cstdio> #include <algorithm> #include <cstring> #include <cctype> #define ll long long #define GG puts("Fuck!") using namespace std; const int N = 210; const int inf = 0x3f3f3f3f; const int M = 210000; ll f[N][N]; int n1[N], n2[N]; int sum1, sum2; inline char Nc() { static char Buf[100000], *p1, *p2; return p1==p2&&(p2=(p1=Buf)+fread(Buf, 1, 100000, stdin), p1==p2)?EOF:*p1++; } int Rd() { int x = 0;char c = Nc(); while(!isdigit(c)) c=Nc(); while(isdigit(c)) x=(x<<1)+(x<<3)+(c^48),c=Nc(); return x; } /*struct Edge { int to, val; Edge *next; }*h[N], e[N<<1];*/ int head[N<<2], to[M], val[M], nxt[M], cnt=1; int _, n, m, s, t; void Add_Edge(int a,int b,int c) { to[++cnt] = b; nxt[cnt] = head[a]; head[a] = cnt; val[cnt] = c; to[++cnt] = a; nxt[cnt] = head[b]; head[b] = cnt; val[cnt] = 0; } void floyd() { for(int k=1;k<=n;k++) { for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { f[i][j] = min(f[i][j], f[i][k] + f[k][j]); } } } } #include <queue> int dep[N<<2]; queue<int>q; bool bfs() { memset(dep,0,sizeof(dep)); while(!q.empty())q.pop(); q.push(s); dep[s]=1; while(!q.empty()) { int u=q.front(); q.pop(); for(int i=head[u];i;i=nxt[i]) { if(!dep[to[i]]&&val[i]) { dep[to[i]]=dep[u]+1; q.push(to[i]); } } } return dep[t]!=0; } int dfs(int p,int mf) { int nf=0; if(p==t)return mf; for(int i=head[p];i;i=nxt[i]) { if(dep[to[i]]==dep[p]+1&&val[i]) { int tmp=dfs(to[i],min(mf-nf,val[i])); if(!tmp)dep[to[i]]=0; nf+=tmp; val[i]-=tmp; val[i^1]+=tmp; if(nf==mf)break; } } return nf; } int dinic() { int ans=0; while(bfs()) { ans+=dfs(s,inf); } return ans; } int main() { memset(f, 0x3f, sizeof(f)); scanf("%d%d", &n, &m); for(int i=1;i<=n;i++) n1[i] = Rd(), n2[i] = Rd(), sum1+=n1[i], sum2+=n2[i]; if(sum1>sum2) { puts("-1");return 0; } for(int i=1;i<=m;i++) { int fr= Rd(), ed= Rd(); ll va= Rd(); f[fr][ed] = min(f[fr][ed], va); f[ed][fr] = min(f[fr][ed], va); } floyd(); ll l = 0, r = 2e11; while(l < r) { ll mid = (l+r) >> 1; memset(head, 0, sizeof(head)); cnt=1; /*GG; printf("%d\n", mid);*/ for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(f[i][j]<=mid||i==j) { Add_Edge(i, j+n, inf); } } } s = n*2 + 1; t = s+1; for(int i=1;i<=n;i++) { Add_Edge(s, i, n1[i]); Add_Edge(i+n, t, n2[i]); } if(dinic()==sum1) r = mid; else l = mid+1; } printf("%lld\n", l < (ll)2e11?l:-1); }