各种排序算法 ruby 版本
Θ(n^2)
1, Bubble sort
- def bubble_sort(a)
- (a.size-2).downto(0) do |i|
- (0..i).each do |j|
- a[j], a[j+1] = a[j+1], a[j] if a[j] > a[j+1]
- end
- end
- return a
- end
2, Selection sort
- def selection_sort(a)
- b = []
- a.size.times do |i|
- min = a.min
- b << min
- a.delete_at(a.index(min))
- end
- return b
- end
3, Insertion sort
- def insertion_sort(a)
- a.each_with_index do |el,i|
- j = i - 1
- while j >= 0
- break if a[j] <= el
- a[j + 1] = a[j]
- j -= 1
- end
- a[j + 1] = el
- end
- return a
- end
4, Shell sort
- def shell_sort(a)
- gap = a.size
- while(gap > 1)
- gap = gap / 2
- (gap..a.size-1).each do |i|
- j = i
- while(j > 0)
- a[j], a[j-gap] = a[j-gap], a[j] if a[j] <= a[j-gap]
- j = j - gap
- end
- end
- end
- return a
- end
Θ(n*logn)
1, Merge sort
- def merge(l, r)
- result = []
- while l.size > 0 and r.size > 0 do
- if l.first < r.first
- result << l.shift
- else
- result << r.shift
- end
- end
- if l.size > 0
- result += l
- end
- if r.size > 0
- result += r
- end
- return result
- end
- def merge_sort(a)
- return a if a.size <= 1
- middle = a.size / 2
- left = merge_sort(a[0, middle])
- right = merge_sort(a[middle, a.size - middle])
- merge(left, right)
- end
2, Heap sort
- def heapify(a, idx, size)
- left_idx = 2 * idx + 1
- right_idx = 2 * idx + 2
- bigger_idx = idx
- bigger_idx = left_idx if left_idx < size && a[left_idx] > a[idx]
- bigger_idx = right_idx if right_idx < size && a[right_idx] > a[bigger_idx]
- if bigger_idx != idx
- a[idx], a[bigger_idx] = a[bigger_idx], a[idx]
- heapify(a, bigger_idx, size)
- end
- end
- def build_heap(a)
- last_parent_idx = a.length / 2 - 1
- i = last_parent_idx
- while i >= 0
- heapify(a, i, a.size)
- i = i - 1
- end
- end
- def heap_sort(a)
- return a if a.size <= 1
- size = a.size
- build_heap(a)
- while size > 0
- a[0], a[size-1] = a[size-1], a[0]
- size = size - 1
- heapify(a, 0, size)
- end
- return a
- end
3, Quick sort
- def quick_sort(a)
- (x=a.pop) ? quick_sort(a.select{|i| i <= x}) + [x] + quick_sort(a.select{|i| i > x}) : []
- end
Θ(n)
1, Counting sort
- def counting_sort(a)
- min = a.min
- max = a.max
- counts = Array.new(max-min+1, 0)
- a.each do |n|
- counts[n-min] += 1
- end
- (0...counts.size).map{|i| [i+min]*counts[i]}.flatten
- end
2, Radix sort
- def kth_digit(n, i)
- while(i > 1)
- n = n / 10
- i = i - 1
- end
- n % 10
- end
- def radix_sort(a)
- max = a.max
- d = Math.log10(max).floor + 1
- (1..d).each do |i|
- tmp = []
- (0..9).each do |j|
- tmp[j] = []
- end
- a.each do |n|
- kth = kth_digit(n, i)
- tmp[kth] << n
- end
- a = tmp.flatten
- end
- return a
- end
3, Bucket sort
- def quick_sort(a)
- (x=a.pop) ? quick_sort(a.select{|i| i <= x}) + [x] + quick_sort(a.select{|i| i > x}) : []
- end
- def first_number(n)
- (n * 10).to_i
- end
- def bucket_sort(a)
- tmp = []
- (0..9).each do |j|
- tmp[j] = []
- end
- a.each do |n|
- k = first_number(n)
- tmp[k] << n
- end
- (0..9).each do |j|
- tmp[j] = quick_sort(tmp[j])
- end
- tmp.flatten
- end
- a = [0.75, 0.13, 0, 0.44, 0.55, 0.01, 0.98, 0.1234567]
- p bucket_sort(a)
- # Result:
- [0, 0.01, 0.1234567, 0.13, 0.44, 0.55, 0.75, 0.98]
github 上 的另一个 实现
- require 'containers/heap' # for heapsort
- =begin rdoc
- This module implements sorting algorithms. Documentation is provided for each algorithm.
- =end
- module Algorithms::Sort
- # Bubble sort: A very naive sort that keeps swapping elements until the container is sorted.
- # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should
- # be implemented for the container.
- # Time Complexity: О(n^2)
- # Space Complexity: О(n) total, O(1) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.bubble_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.bubble_sort(container)
- loop do
- swapped = false
- (container.size-1).times do |i|
- if (container[i] <=> container[i+1]) == 1
- container[i], container[i+1] = container[i+1], container[i] # Swap
- swapped = true
- end
- end
- break unless swapped
- end
- container
- end
- # Comb sort: A variation on bubble sort that dramatically improves performance.
- # Source: http://yagni.com/combsort/
- # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should
- # be implemented for the container.
- # Time Complexity: О(n^2)
- # Space Complexity: О(n) total, O(1) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.comb_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.comb_sort(container)
- container
- gap = container.size
- loop do
- gap = gap * 10/13
- gap = 11 if gap == 9 || gap == 10
- gap = 1 if gap < 1
- swapped = false
- (container.size - gap).times do |i|
- if (container[i] <=> container[i + gap]) == 1
- container[i], container[i+gap] = container[i+gap], container[i] # Swap
- swapped = true
- end
- end
- break if !swapped && gap == 1
- end
- container
- end
- # Selection sort: A naive sort that goes through the container and selects the smallest element,
- # putting it at the beginning. Repeat until the end is reached.
- # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should
- # be implemented for the container.
- # Time Complexity: О(n^2)
- # Space Complexity: О(n) total, O(1) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.selection_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.selection_sort(container)
- 0.upto(container.size-1) do |i|
- min = i
- (i+1).upto(container.size-1) do |j|
- min = j if (container[j] <=> container[min]) == -1
- end
- container[i], container[min] = container[min], container[i] # Swap
- end
- container
- end
- # Heap sort: Uses a heap (implemented by the Containers module) to sort the collection.
- # Requirements: Needs to be able to compare elements with <=>
- # Time Complexity: О(n^2)
- # Space Complexity: О(n) total, O(1) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.heapsort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.heapsort(container)
- heap = Containers::Heap.new(container)
- ary = []
- ary << heap.pop until heap.empty?
- ary
- end
- # Insertion sort: Elements are inserted sequentially into the right position.
- # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should
- # be implemented for the container.
- # Time Complexity: О(n^2)
- # Space Complexity: О(n) total, O(1) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.insertion_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.insertion_sort(container)
- return container if container.size < 2
- (1..container.size-1).each do |i|
- value = container[i]
- j = i-1
- while j >= 0 and container[j] > value do
- container[j+1] = container[j]
- j = j-1
- end
- container[j+1] = value
- end
- container
- end
- # Shell sort: Similar approach as insertion sort but slightly better.
- # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should
- # be implemented for the container.
- # Time Complexity: О(n^2)
- # Space Complexity: О(n) total, O(1) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.shell_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.shell_sort(container)
- increment = container.size/2
- while increment > 0 do
- (increment..container.size-1).each do |i|
- temp = container[i]
- j = i
- while j >= increment && container[j - increment] > temp do
- container[j] = container[j-increment]
- j -= increment
- end
- container[j] = temp
- end
- increment = (increment == 2 ? 1 : (increment / 2.2).round)
- end
- container
- end
- # Quicksort: A divide-and-conquer sort that recursively partitions a container until it is sorted.
- # Requirements: Container should implement #pop and include the Enumerable module.
- # Time Complexity: О(n log n) average, O(n^2) worst-case
- # Space Complexity: О(n) auxiliary
- # Stable: No
- #
- # Algorithms::Sort.quicksort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- # def self.quicksort(container)
- # return [] if container.empty?
- #
- # x, *xs = container
- #
- # quicksort(xs.select { |i| i < x }) + [x] + quicksort(xs.select { |i| i >= x })
- # end
- def self.partition(data, left, right)
- pivot = data[front]
- left += 1
- while left <= right do
- if data[frontUnknown] < pivot
- back += 1
- data[frontUnknown], data[back] = data[back], data[frontUnknown] # Swap
- end
- frontUnknown += 1
- end
- data[front], data[back] = data[back], data[front] # Swap
- back
- end
- # def self.quicksort(container, left = 0, right = container.size - 1)
- # if left < right
- # middle = partition(container, left, right)
- # quicksort(container, left, middle - 1)
- # quicksort(container, middle + 1, right)
- # end
- # end
- def self.quicksort(container)
- bottom, top = [], []
- top[0] = 0
- bottom[0] = container.size
- i = 0
- while i >= 0 do
- l = top[i]
- r = bottom[i] - 1;
- if l < r
- pivot = container[l]
- while l < r do
- r -= 1 while (container[r] >= pivot && l < r)
- if (l < r)
- container[l] = container[r]
- l += 1
- end
- l += 1 while (container[l] <= pivot && l < r)
- if (l < r)
- container[r] = container[l]
- r -= 1
- end
- end
- container[l] = pivot
- top[i+1] = l + 1
- bottom[i+1] = bottom[i]
- bottom[i] = l
- i += 1
- else
- i -= 1
- end
- end
- container
- end
- # Mergesort: A stable divide-and-conquer sort that sorts small chunks of the container and then merges them together.
- # Returns an array of the sorted elements.
- # Requirements: Container should implement []
- # Time Complexity: О(n log n) average and worst-case
- # Space Complexity: О(n) auxiliary
- # Stable: Yes
- #
- # Algorithms::Sort.mergesort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5]
- def self.mergesort(container)
- return container if container.size <= 1
- mid = container.size / 2
- left = container[0...mid]
- right = container[mid...container.size]
- merge(mergesort(left), mergesort(right))
- end
- def self.merge(left, right)
- sorted = []
- until left.empty? or right.empty?
- left.first <= right.first ? sorted << left.shift : sorted << right.shift
- end
- sorted + left + right
- end
- end
Source: http://github.com/kanwei/algorithms/tree/master
作者:
fandyst
出处: http://www.cnblogs.com/todototry/
关注语言: python、javascript(node.js)、objective-C、java、R、C++
兴趣点: 互联网、大数据技术、大数据IO瓶颈、col-oriented DB、Key-Value DB、数据挖掘、模式识别、deep learning、开发与成本管理
产品:
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
出处: http://www.cnblogs.com/todototry/
关注语言: python、javascript(node.js)、objective-C、java、R、C++
兴趣点: 互联网、大数据技术、大数据IO瓶颈、col-oriented DB、Key-Value DB、数据挖掘、模式识别、deep learning、开发与成本管理
产品:
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。