@hdu - 6607@ Easy Math Problem
@description@
求:
\[\sum_{i=1}^{n}\sum_{j=1}^{n}gcd^k(i, j)\times lcm(i, j)\times [gcd(i, j) \in prime] \mod 10^9 + 7
\]
@solution@
\[\begin{aligned}
ans &= \sum_{i=1}^{n}\sum_{j=1}^{n}gcd^k(i, j)\times lcm(i, j)\times [gcd(i, j) \in prime] \\
&= \sum_{d=1}^{n}[d \in prime]\times d^{k+1}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{d}\rfloor}[gcd(i, j) = 1]\times i \times j
\end{aligned}
\]
后面那个是经典问题了。虽然明显可以莫比乌斯反演,不过注意到 i, j 取值范围相同,可以用欧拉函数。
基于结论 \(gcd(i, n) = gcd(n - i, n)\),与 n 互质的数总是成对存在,所以有:
\[\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i, j) = 1]\times i \times j = \sum_{i=1}^{n}\phi(i)\times i^2
\]
记 \(S(n) = \sum_{i=1}^{n}\phi(i)\times i^2\),可以用杜教筛求 \(S\)(能不用 min-25 筛就不用)。则:
\[ans = \sum_{d=1}^{n}[d \in prime]\times d^{k+1}\times S(\lfloor \frac{n}{d}\rfloor)
\]
如果对 \(S(\lfloor \frac{n}{d}\rfloor)\) 分块,我们需要求质数的 k + 1 次幂的前缀和。其实就是 min-25 筛的前半部分。
@accepted code@
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MOD = int(1E9) + 7;
const int MAXN = 4650000;
inline int add(int x, int y) {return (x + y >= MOD ? x + y - MOD : x + y);}
inline int sub(int x, int y) {return (x - y < 0 ? x - y + MOD : x - y);}
inline int mul(int x, int y) {return 1LL * x * y % MOD;}
int pow_mod(int b, int p) {
int ret = 1;
for(int i=p;i;i>>=1,b=mul(b,b))
if( i & 1 ) ret = mul(ret, b);
return ret;
}
bool nprm[MAXN + 5];
int prm[MAXN + 5], phi[MAXN + 5], pcnt;
void sieve() {
phi[1] = 1;
for(int i=2;i<=MAXN;i++) {
if( !nprm[i] ) prm[++pcnt] = i, phi[i] = i - 1;
for(int j=1;i*prm[j]<=MAXN;j++) {
nprm[i*prm[j]] = true;
if( i % prm[j] == 0 ) {
phi[i*prm[j]] = phi[i]*prm[j];
break;
}
else phi[i*prm[j]] = phi[i]*phi[prm[j]];
}
}
}
int c[105][105], f[105][105];
void get_coef() {
for(int i=0;i<=102;i++) {
c[i][0] = 1;
for(int j=1;j<=i;j++)
c[i][j] = add(c[i-1][j], c[i-1][j-1]);
}
for(int i=0;i<=101;i++) {
for(int j=0;j<=i+1;j++)
f[i][j] = c[i+1][j];
for(int j=0;j<i;j++) {
for(int k=0;k<=j+1;k++)
f[i][k] = sub(f[i][k], mul(c[i+1][j], f[j][k]));
}
int iv = pow_mod(i + 1, MOD - 2);
for(int j=0;j<=i+1;j++)
f[i][j] = mul(f[i][j], iv);
}
}
int get_sum(int n, int k) {
int ret = 0;
for(int i=k+1;i>=0;i--)
ret = add(mul(ret, n), f[k][i]);
return ret;
}
int sum[MAXN + 5];
void init() {
sieve(), get_coef();
for(int i=1;i<=MAXN;i++)
sum[i] = add(sum[i-1], mul(mul(i, i), phi[i]));
}
ll n; int k;
int id1[MAXN + 5], id2[MAXN + 5], cnt;
int id(ll m) {return (m <= MAXN ? id1[m] : id2[n/m]);}
ll a[MAXN + 5]; int s[MAXN + 5];
void get_id() {
cnt = 0;
for(ll i=1;i<=n;i=(n/(n/i))+1) {
ll p = n / i;
if( p <= MAXN ) id1[p] = (++cnt);
else id2[n/p] = (++cnt);
a[cnt] = p, s[cnt] = -1;
}
}
int phisum(ll m) {
if( m <= MAXN ) return sum[m];
int &ans = s[id(m)];
if( ans != -1 ) return ans;
ans = get_sum(m % MOD, 3);
for(ll i=2;i<=m;i++) {
ll p = m / i, j = m / p;
ans = sub(ans, mul(sub(get_sum(j % MOD, 2), get_sum((i-1) % MOD, 2)), phisum(p)));
i = j;
}
return ans;
}
int dp[MAXN + 5];
void get_dp() {
for(int i=1;i<=cnt;i++) dp[i] = sub(get_sum(a[i] % MOD, k + 1), 1);
int tmp = 0;
for(int i=1;i<=pcnt;i++) {
ll sq = 1LL*prm[i]*prm[i]; int del = pow_mod(prm[i], k + 1);
if( sq > n ) break;
for(int j=1;j<=cnt;j++) {
if( sq > a[j] ) break;
dp[j] = sub(dp[j], mul(del, sub(dp[id(a[j] / prm[i])], tmp)));
}
tmp = add(tmp, del);
}
}
void solve() {
scanf("%lld%d", &n, &k), get_id(), get_dp();
int ans = 0;
for(ll i=1;i<=n;i++) {
ll p = n / i, j = n / p;
ans = add(ans, mul(sub(phisum(j), phisum(i - 1)), dp[id(p)]));
i = j;
}
printf("%d\n", ans);
}
int main() {
init();
int T; scanf("%d", &T);
while( T-- ) solve();
}
@details@
整除分块时所有数都必须取 long long,但是取模要转成 int。注意一下不要出锅。
update in 2020/09/04:
如果你真的头铁,想要用莫比乌斯反演得到 \(\sum [\gcd(i, j)=1]ij = \sum\phi(i)\times i^2\):
\[\begin{aligned}
\sum [\gcd(i, j)=1]ij &= \sum(\mu(d)\times d^2)(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} i)^2 \\
&= \sum_{d\times k\leq n} (\mu(d)\times d^2)k^3 \\
&= \sum_{d\times k = i}^{i\leq n} i^2 \mu(d) k \\
&= \sum i^2 \phi(i)
\end{aligned}
\]
数学本质是一样的,只是有一个比较不容易看出来的 trick:\((\sum_{i=1}^n i)^2=\sum_{i=1}^{n} i^3\)。