@uoj - 435@ 【集训队作业2018】Simple Tree


@description@

有一棵有根树,根为 1,点有点权。
现在有 m 次操作,操作有 3 种:
1 x y w,将 x 到 y 的路径上的点点权加上 w (其中 w=±1);
2 x y,询问在 x 到 y 的路径上有多少个点点权 >0;
3 x,询问在 x 的子树里的点有多少个点点权 >0。

输入格式
第一行三个数 n,m,T,表示树的结点个数,操作个数,和是否加密。
接下来 n−1 行,每行 2 个数 x y,表示结点 x 和 y 之间有一条边。
接下来一行 n 个数,第 i 个数表示结点 i 的初始点权。
接下来 m 行,每行格式见题目描述。
如果 T=1,则这 m 行读入的每个 x,y 都需要异或 last_ans 才能得到真实的输入,其中 last_ans 表示上一次询问操作的答案,如果不存在上一次询问操作则为 0​。

输出格式
对于每个询问操作,输出一行表示答案。

样例一
input
5 5 0
1 2
1 3
3 4
3 5
1 0 0 0 0
2 2 5
3 3
1 2 5 1
2 2 5
3 3
output
1
0
4
2

限制与约定
对于所有数据,1≤n≤105,1≤m≤105,−10^9≤ 点权 ≤10^9。

@solution@

不妨先考虑链的情况。

对区间的值域进行修改与查询,除了分块以外,起码我是没有想到其他方法。
修改时整块 tag,散块暴力重构排序;查询时整块二分,散块暴力。
得到了一个 \(O(n\sqrt{n}\log n)\) 的算法。

至于上树。树分块?没听说过,啥东西呀。
我们可以通过树链剖分转成 log 个不相交的区间修改查询。
得到了一个连暴力都不如的 \(O(n\sqrt{n}\log^2 n)\) 的算法。

别慌,我们来尝试优化一下,能否去掉分块本身的那个 log。
一种空间消耗较大的方法使用桶。注意到当值域的绝对值 |ai| > m 时,多的部分是没有用的。于是我们可以把值域缩到 -m ~ m 之间。
然后就可以对于每个块开一个大小为 2*m 的桶。每次整块 ±1 时,整个块的答案的变化量可以 O(1) 算。
这道题可能要开 short int 才不会被卡空间。

另一种方法就是直接优化原先的做法。
排序可以将被修改的区间与没有被修改的区间先裂开,更改,再进行归并。就没有 log 的存在了。
整块修改时维护一个指针方便计算答案的变化量。为了做到 O(1) 移动指针,需要一次跳过值相同的所有数,再维护一下值相同的最左与最右。

这样就优化成了 \(O(n\sqrt{n}\log n)\)。不过还是有点玄,我们再优化一下。
注意到树链剖分将一次操作转成了 log 个不相交的区间操作,因此一次最多涉及 \(O(\sqrt{n})\) 个整块,而散块可能有 \(O(\log n)\) 个。
因此散块的复杂度比整块大。我们把块调小一点,变成 \(O(\sqrt{n\log n})\) 个块,就可以将复杂度有效均衡在 \(O(\sqrt{n\log n})\)

@accepted code@

//用桶的方法 AC 的
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 100002;
const int BLOCK = 105;
struct edge{
	int to; edge *nxt;
}edges[2*MAXN + 5], *adj[MAXN + 5], *ecnt=&edges[0];
void addedge(int u, int v) {
	edge *p = (++ecnt);
	p->to = v, p->nxt = adj[u], adj[u] = p;
	p = (++ecnt);
	p->to = u, p->nxt = adj[v], adj[v] = p;
}
int siz[MAXN + 5], dep[MAXN + 5], hvy[MAXN + 5], fa[MAXN + 5];
void dfs1(int x, int f) {
	fa[x] = f, siz[x] = 1, dep[x] = dep[f] + 1, hvy[x] = 0;
	for(edge *p=adj[x];p;p=p->nxt) {
		if( p->to == f ) continue;
		dfs1(p->to, x);
		siz[x] += siz[p->to];
		if( siz[p->to] > siz[hvy[x]] )
			hvy[x] = p->to;
	}
}
int top[MAXN + 5], tid[MAXN + 5], dfn[MAXN + 5], dcnt;
void dfs2(int x, int tp) {
	top[x] = tp, tid[x] = (++dcnt), dfn[dcnt] = x;
	if( !hvy[x] ) return ;
	dfs2(hvy[x], tp);
	for(edge *p=adj[x];p;p=p->nxt)
		if( p->to != fa[x] && p->to != hvy[x] )
			dfs2(p->to, p->to);
}
int n, m, T;
int a[MAXN + 5], id[MAXN + 5];
int l[MAXN + 5], r[MAXN + 5], tg[MAXN + 5], res[MAXN + 5];
short int cnt[1000][2*MAXN + 5];
void insert(int k, int x) {cnt[x][k]++; if( k > tg[x] ) res[x]++;}
void erase(int k, int x) {cnt[x][k]--; if( k > tg[x]) res[x]--;}
void add(int x) {res[x] += cnt[x][tg[x]], tg[x]--;}
void remove(int x) {tg[x]++, res[x] -= cnt[x][tg[x]];}
void build() {
	int bcnt = 0;
	for(int i=1;i<=n;i++) {
		if( (i - 1) % BLOCK == 0 )
			bcnt++, l[bcnt] = i, tg[bcnt] = MAXN, res[bcnt] = 0;
		r[bcnt] = i, insert(a[dfn[i]], id[i] = bcnt);
	}
}
void update(int &x) {
	if( x < 0 ) x = 0;
	if( x > 2*MAXN ) x = 2*MAXN;
}
void Amodify(int le, int ri, int w) {
	if( id[le] == id[ri] ) {
		int p = id[le];
		for(int i=le;i<=ri;i++) {
			erase(a[dfn[i]], p);
			a[dfn[i]] += w, update(a[dfn[i]]);
			insert(a[dfn[i]], p);
		}
	}
	else {
		int p = id[le], q = id[ri];
		for(int i=le;i<=r[p];i++) {
			erase(a[dfn[i]], p);
			a[dfn[i]] += w, update(a[dfn[i]]);
			insert(a[dfn[i]], p);
		}
		for(int i=p+1;i<=q-1;i++)
			( w == 1 ) ? add(i) : remove(i);
		for(int i=l[q];i<=ri;i++) {
			erase(a[dfn[i]], q);
			a[dfn[i]] += w, update(a[dfn[i]]);
			insert(a[dfn[i]], q);
		}
	}
}
int Aquery(int le, int ri) {
	int ret = 0;
	if( id[le] == id[ri] ) {
		int p = id[le];
		for(int i=le;i<=ri;i++)
			ret += (a[dfn[i]] > tg[p]);
	}
	else {
		int p = id[le], q = id[ri];
		for(int i=le;i<=r[p];i++)
			ret += (a[dfn[i]] > tg[p]);
		for(int i=p+1;i<=q-1;i++)
			ret += res[i];
		for(int i=l[q];i<=ri;i++) 
			ret += (a[dfn[i]] > tg[q]);
	}
	return ret;
}
void modify(int x, int y, int w) {
	while( top[x] != top[y] ) {
		if( dep[top[x]] < dep[top[y]] ) swap(x, y);
		Amodify(tid[top[x]], tid[x], w);
		x = fa[top[x]];
	}
	if( dep[x] < dep[y] ) swap(x, y);
	Amodify(tid[y], tid[x], w);
}
int query(int x, int y) {
	int ret = 0;
	while( top[x] != top[y] ) {
		if( dep[top[x]] < dep[top[y]] ) swap(x, y);
		ret += Aquery(tid[top[x]], tid[x]);
		x = fa[top[x]];
	}
	if( dep[x] < dep[y] ) swap(x, y);
	ret += Aquery(tid[y], tid[x]);
	return ret;
}
int query(int x) {
	return Aquery(tid[x], tid[x] + siz[x] - 1);
}
int main() {
	scanf("%d%d%d", &n, &m, &T);
	for(int i=1;i<n;i++) {
		int x, y; scanf("%d%d", &x, &y);
		addedge(x, y);
	}
	for(int i=1;i<=n;i++)
		scanf("%d", &a[i]), a[i] += MAXN, update(a[i]);
	dfs1(1, 0), dfs2(1, 1), build();
	int last_ans = 0;
	for(int i=1;i<=m;i++) {
		int op; scanf("%d", &op);
		if( op == 1 ) {
			int x, y, w; scanf("%d%d%d", &x, &y, &w);
			modify(x ^ last_ans, y ^ last_ans, w);
		}
		else if( op == 2 ) {
			int x, y; scanf("%d%d", &x, &y);
			last_ans = query(x ^ last_ans, y ^ last_ans);
			printf("%d\n", last_ans), last_ans *= T;
		}
		else {
			int x; scanf("%d", &x);
			last_ans = query(x ^ last_ans);
			printf("%d\n", last_ans), last_ans *= T;
		}
	}
}

@details@

写完桶的方法发现被 hack 数据卡内存。
然后一怒之下换成重构的方法,调了一下午终于过了(我树链剖分要是再搞混点编号与 dfs 序中的编号我就***)。

然后有人告诉我 short int 能过。
。。。

posted @ 2019-10-21 13:45  Tiw_Air_OAO  阅读(245)  评论(0编辑  收藏  举报