@hdu - 6428@ Problem C. Calculate
@description@
给定 A, B, C,求:
Input
第一行给定一个整数 T,描述数据组数。
接下来每组数据包含三个整数 A, B, C,含义如上。
1 ≤ T ≤ 10, 0 < A, B, C ≤ 10^7
Output
对于每组数据,输出答案 mod 2^30。
Sample Input
4
96 93 95
970 906 893
92460 95043 54245
9760979 8053227 7156842
Sample Output
1114536
28070648
388873924
623507672
@solution@
套路反演一波:
注意到其实 \((\sum_{i=1}^{A}[p|i]) = \lfloor\frac{A}{p}\rfloor\),是比较好求解的,但是另外两项不能直接这么类比着做。
考虑从唯一分解式的角度去理解。令 \(p = \prod_{i=0}a_i^{b_i}, j = \prod_{i=0}a_i^{c_i}\)。
如果 \(p|j^2\),则有 \(b_i \le 2c_i\),于是 \(\lceil\frac{b_i}{2}\rceil \le c_i\)。
我们令 \(f[p] = \prod_{i=0}a_i^{\lceil\frac{b_i}{2}\rceil}\),则条件等价转为 \(f[p]|j\)。类比得到 \(g[p]\) 的定义以及 \(g[p]|k\)。
所以答案式变为:
那么怎么快速求 f[p] 或 g[p] 呢?可以发现 \(f[p] = \prod_{i=0}f[a_i^{b_i}]\),也就是说它是积性函数。
所以我们就使用线性筛任意积性函数的技巧即可。这里有一个可以参考的连接。
我实现上跟那个博客写得不大一样(不过思想是一致的嗯嗯)。
然后我们考虑 \(\sum_{d=1}\phi(d)*\mu(\frac{p}{d})\),发现它是两个积性函数的狄利克雷卷积,而众所周知这也是个积性函数。
然后就可以愉快地再次任意函数线性筛一波。
最后枚举 p 算答案。时间复杂度 O(n)。
@accepted code@
#include<cstdio>
const int MOD = (1<<30) - 1;
const int MAXN = int(1E7);
inline int mul(int a, int b) {return (1LL*a*b)&MOD;}
int prm[MAXN + 5], pcnt = 0;
int low[MAXN + 5], f[MAXN + 5], g[MAXN + 5], h[MAXN + 5];
void sieve() {
low[1] = f[1] = g[1] = h[1] = 1;
for(int i=2;i<=MAXN;i++) {
if( !low[i] ) {
low[i] = i, prm[++pcnt] = i;
f[i] = i - 2, g[i] = h[i] = i;
long long p = 1LL*i*i;
for(int j=2;p<=MAXN;p*=i,j++) {
low[p] = p;
f[p] = p/i/i*(i-1)*(i-1);
g[p] = g[p/i];
if( (j-1) % 2 == 0 ) g[p] *= i;
h[p] = h[p/i];
if( (j-1) % 3 == 0 ) h[p] *= i;
}
}
for(int j=1;1LL*i*prm[j]<=MAXN;j++) {
if( i % prm[j] == 0 ) {
if( i != low[i] ) {
low[i*prm[j]] = low[i]*prm[j];
f[i*prm[j]] = f[i/low[i]]*f[prm[j]*low[i]];
g[i*prm[j]] = g[i/low[i]]*g[prm[j]*low[i]];
h[i*prm[j]] = h[i/low[i]]*h[prm[j]*low[i]];
}
break;
}
else {
low[i*prm[j]] = prm[j];
f[i*prm[j]] = f[i]*f[prm[j]];
g[i*prm[j]] = g[i]*g[prm[j]];
h[i*prm[j]] = h[i]*h[prm[j]];
}
}
}
}
void solve() {
int A, B, C, ans = 0; scanf("%d%d%d", &A, &B, &C);
for(int i=1;i<=A;i++)
ans = (1LL*ans + 1LL*mul(mul(f[i], A/i), mul(B/g[i], C/h[i])))&MOD;
printf("%d\n", ans);
}
int main() {
sieve();
int T; scanf("%d", &T);
for(int i=1;i<=T;i++) solve();
}
@details@
因为是对 2^30 取模,所以可以用位运算加速(虽然我不知道能加到多快,不过应该挺快的)。