CodeForces 1109C. Sasha and a Patient Friend

题目简述:维护以下三种操作

1. "1 t s":在时刻$t$插入命令$s$。保证任意操作后,任意时刻至多只有一个命令。

2. "2 t":删除时刻$t$的命令。

3. "3 l r v":求最小的$t \in [l, r]$,使得$f(t)=0$,其中

$$ f(t) = v+\int_l^t g(x) \mathrm{d} x, $$

其中设在$[l, r]$时间内的命令依次为$(t_1, s_1), \dots, (t_m, s_m)$,则

$$ g(t) = \begin{cases}
0 & l \leq t < t_1 \\
s_1 & t_1 \leq t < t_2 \\
\dots \\
s_k & t_k \leq t < t_{k+1} \\
\dots \\
s_m & t \geq t_m
\end{cases}. $$

若不存在,则返回$-1$。

 

解:code

相关题目:[NOI2005]维护数列

我们将3种操作翻译为以下三种操作:

1. "1 t s":设时刻$t$之后的下一个命令的时刻是$t' > t$。则将$[t, t')$整个区间赋值为$s$。

2. "2 t":设时刻$t$的相邻命令的时刻是$t_1$和$t_2$,满足$t_1 < t < t_2$,并且$t_1$时刻的命令是$s_1$。则将$[t, t_2)$整个区间赋值为$s_1$。

3. "3 l r v":设时刻$l$之后最近的命令在时刻$t_0 \geq l$,令$\mathit{lsum}$表示$[t_0, r)$区间上最小的前缀和,若$v+\mathit{lsum} \leq 0$,则存在时刻$t \in [t_0, r]$,使得$f(t) = 0$。而找到具体的$t$,则可用二分法。

以上三个操作均可用线段树来维护,令

struct node
{
    node *Lc, *Rc; //线段树左右儿子
    int flag, set; //是否区间赋值,具体赋值
    ll lsum, sum;  //lsum如上定义,sum为区间求和
};

  

则可以通过以下方式维护信息

void update(node *p)
{
    p->sum = p->Lc->sum+p->Rc->sum;
    p->lsum = min(p->Lc->lsum, p->Lc->sum+p->Rc->lsum);
}

  

从而时间复杂度为$O(q \log V)$,其中$q$为操作个数,$V$为时刻的取值范围。

注:可预先离散化,或用平衡树来维护,将时间复杂度降至$O(q \log q)$。

 

posted @ 2019-02-19 14:03  liouzhou_101  阅读(643)  评论(0编辑  收藏  举报