CodeForces 1091G. New Year and the Factorisation Collaboration

题目简述:若你获得“超能力”:固定$n$,对任意$a$,可以快速求出$x \in [0, n)$(若存在),使得$x^2 \equiv a \pmod n$,若存在多个$x$满足条件,则返回其中一个(对固定的$a$返回固定的$x$)。给定$n \leq 2^{1024}$,求其质因数分解。保证$n$是至多$10$个不同质数之积。

解:code

令$f(a)$表示通过“超能力”获得的$x$(若存在),使得$x^2 \equiv a \pmod n$。

随机选择$x \in [1, n-1]$,令$y = f(x^2)$。

设$n = p_1 p_2 \dots p_k$,其中$p_1, p_2, \dots, p_k$是互不相同的质数,由中国剩余定理(Chinese Remainder Theorem)得

$$ y^2 \equiv x^2 \pmod n \Longleftrightarrow \begin{cases} y^2 \equiv x^2 \pmod {p_1} \\ \vdots \\ y^2 \equiv x^2 \pmod {p_k} \end{cases} $$

对每个质数$p_i$,$y^2 \equiv x^2 \pmod {p_i}$的解为$y \equiv x \pmod {p_i}$或$y \equiv -x \pmod {p_i}$。因此

$$ f(x^2) \equiv \pm x \pmod {p_i}. $$

于是,

$$ \Pr \Big[ f(x^2) \equiv x \pmod{p_i} \Big| p_i \not| x \Big] = \frac 1 2, $$

再由中国剩余定理可得

$$ \Pr \Big[ f(x^2) \equiv x \pmod n \Big| \gcd(x,n) = 1 \Big] = \frac 1 {2^k}. $$

也即,若$x$与$n$互质,即$\gcd(n, x) = 1$,则我们可以通过“超能力”得到$y \neq x$的概率为$1 - 2^{-k}$。

注:若把$x$与$n$互质的条件去掉,则类似可有

$$ \Pr \Big[ f(x^2) \equiv x \pmod n \Big] \leq \frac 1 2. $$

假设得到了一个$y = f(x^2) \neq x$,则$x^2 \equiv y^2 \pmod n$,则必定有$n = n_1n_2$,其中$n_1, n_2 > 1$,使得$x \equiv y \pmod {n_1}$但$x \not\equiv y \pmod {n_2}$,即$n_1 | (x-y)$但$n_2 \not| (x-y)$,又$\gcd(n_1,n_2) = 1$,故$\gcd(n, x-y) = n_1$。此时,我们已将$n$分解为更小的两个数的乘积。重复这个操作$k-1$次,便能得到$n$的质因数分解。

 

注:由于对称性,$\gcd(n, x-y)$与$\gcd(n, x+y)$在概率上性质是一样的。在$n$分解成若干个正整数之积后,以上分析依然适用于分解$n$的因子的情形。

posted @ 2019-02-14 20:18  liouzhou_101  阅读(252)  评论(0编辑  收藏  举报