人工智能-过滤网站的恶意留言
通过学习贝叶斯(https://www.cnblogs.com/TimVerion/p/11197043.html)解决案例:
过滤网站的恶意留言
from numpy import * from sklearn.metrics import r2_score #过滤网站的恶意留言 侮辱性:1 非侮辱性:0 #创建一个实验样本 def loadDataSet(): postingList = [['my','dog','has','flea','problems','help','please'], ['maybe','not','take','him','to','dog','park','stupid'], ['my','dalmation','is','so','cute','I','love','him'], ['stop','posting','stupid','worthless','garbage'], ['mr','licks','ate','my','steak','how','to','stop','him'], ['quit','buying','worthless','dog','food','stupid']] classVec = [0,1,0,1,0,1] return postingList, classVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) #创建两个集合的并集 return list(vocabSet) def setOfWords2Vec(vocabList,inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 else:print("the word:%s is not in my Vocabulary!" % word) return returnVec #朴素贝叶斯分类器训练函数,从词向量计算概率 def trainNB0(trainMatrix , trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(numWords) p1Num = ones(numWords) p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) # print("trainMatrix[i] = ",trainMatrix[i]) # print("p1Num=",p1Num) # print('p1Denom=',p1Denom) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = p1Num / p1Denom p0Vect = p0Num / p0Denom # print("p1Vect=",p1Vect) # print("p0Vect=",p0Vect) # print('pAbusive=',pAbusive) return p0Vect , p1Vect , pAbusive def classifyNB(vec2Classify , p0Vec , p1Vec , pClass1): p1 = sum(vec2Classify*p1Vec) + log(pClass1) p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1) if p1 > p0: return 1 else: return 0 def testingNB(): listOPosts, listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList,postinDoc)) #print(trainMat) p0V,p1V,pAb = trainNB0(array(trainMat), array(listClasses)) testEntry = ['love' , 'my','dalmation'] thisDoc = array(setOfWords2Vec(myVocabList,testEntry)) print(testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)) testEntry = ['stupid','garbage'] thisDoc = array(setOfWords2Vec(myVocabList,testEntry)) print(testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)) testingNB()
['love', 'my', 'dalmation'] classified as: 0 ['stupid', 'garbage'] classified as: 1