GroupingComparator 自定义分组

图示说明:

 
有如下订单数据:

现在需要求出每一个订单中最贵的商品。

 需求分析实现

1)利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce

2)在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值。

代码实现:

定义订单信息OrderBean

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class OrderBean implements WritableComparable<OrderBean> {
    private int order_id; // 订单id号
    private double price; // 价格

    public OrderBean() {
        super();
    }

    public OrderBean(int order_id, double price) {
        super();
        this.order_id = order_id;
        this.price = price;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(order_id);
        out.writeDouble(price);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        order_id = in.readInt();
        price = in.readDouble();
    }

    @Override
    public String toString() {
        return order_id + "\t" + price;
    }

    public int getOrder_id() {
        return order_id;
    }

    public void setOrder_id(int order_id) {
        this.order_id = order_id;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    // todo 排序规则 根据订单号正序进行排序 如果订单号相同 则根据价格倒序排序
    @Override
    public int compareTo(OrderBean o) {

        int result ;

        if (order_id > o.getOrder_id()) {
            result = 1;
        } else if (order_id < o.getOrder_id()) {
            result = -1;
        } else {
            // 价格倒序排序
            result = price > o.getPrice() ? -1 : 1;
        }

        return result;
    }
}
 
 
 
69
 
 
 
1
import java.io.DataInput;
2
import java.io.DataOutput;
3
import java.io.IOException;
4

5
public class OrderBean implements WritableComparable<OrderBean> {
6
    private int order_id; // 订单id号
7
    private double price; // 价格
8

9
    public OrderBean() {
10
        super();
11
    }
12

13
    public OrderBean(int order_id, double price) {
14
        super();
15
        this.order_id = order_id;
16
        this.price = price;
17
    }
18

19
    @Override
20
    public void write(DataOutput out) throws IOException {
21
        out.writeInt(order_id);
22
        out.writeDouble(price);
23
    }
24

25
    @Override
26
    public void readFields(DataInput in) throws IOException {
27
        order_id = in.readInt();
28
        price = in.readDouble();
29
    }
30

31
    @Override
32
    public String toString() {
33
        return order_id + "\t" + price;
34
    }
35

36
    public int getOrder_id() {
37
        return order_id;
38
    }
39

40
    public void setOrder_id(int order_id) {
41
        this.order_id = order_id;
42
    }
43

44
    public double getPrice() {
45
        return price;
46
    }
47

48
    public void setPrice(double price) {
49
        this.price = price;
50
    }
51

52
    // todo 排序规则 根据订单号正序进行排序 如果订单号相同 则根据价格倒序排序
53
    @Override
54
    public int compareTo(OrderBean o) {
55

56
        int result ;
57

58
        if (order_id > o.getOrder_id()) {
59
            result = 1;
60
        } else if (order_id < o.getOrder_id()) {
61
            result = -1;
62
        } else {
63
            // 价格倒序排序
64
            result = price > o.getPrice() ? -1 : 1;
65
        }
66

67
        return result;
68
    }
69
}
 
 

编写OrderMapper处理流程

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
    OrderBean k = new OrderBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // 1 获取一行
        String line = value.toString();

        // 2 截取
        String[] fields = line.split("\t");

        // 3 封装对象
        k.setOrder_id(Integer.parseInt(fields[0]));
        k.setPrice(Double.parseDouble(fields[2]));

        // 4 写出
        context.write(k, NullWritable.get());
    }
}
 
 
 
27
 
 
 
1
import org.apache.hadoop.io.LongWritable;
2
import org.apache.hadoop.io.NullWritable;
3
import org.apache.hadoop.io.Text;
4
import org.apache.hadoop.mapreduce.Mapper;
5

6
import java.io.IOException;
7

8
public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
9
    OrderBean k = new OrderBean();
10

11
    @Override
12
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
13

14
        // 1 获取一行
15
        String line = value.toString();
16

17
        // 2 截取
18
        String[] fields = line.split("\t");
19

20
        // 3 封装对象
21
        k.setOrder_id(Integer.parseInt(fields[0]));
22
        k.setPrice(Double.parseDouble(fields[2]));
23

24
        // 4 写出
25
        context.write(k, NullWritable.get());
26
    }
27
}
 
 

编写OrderPartitioner处理流程

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;

//todo 重新分区规则 订单号一样的 来到同一个分区中
public class OrderPartitioner extends Partitioner<OrderBean, NullWritable> {

    @Override
    public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) {

        return (key.getOrder_id() & Integer.MAX_VALUE) % numReduceTasks;
    }
}
 
 
 
12
 
 
 
1
import org.apache.hadoop.io.NullWritable;
2
import org.apache.hadoop.mapreduce.Partitioner;
3

4
//todo 重新分区规则 订单号一样的 来到同一个分区中
5
public class OrderPartitioner extends Partitioner<OrderBean, NullWritable> {
6

7
    @Override
8
    public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) {
9

10
        return (key.getOrder_id() & Integer.MAX_VALUE) % numReduceTasks;
11
    }
12
}
 
 

编写OrderGroupingComparator处理流程

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

//todo 自定义分组规则 订单号一样的来到同一个分组中
public class OrderGroupingComparator extends WritableComparator {

    protected OrderGroupingComparator() {
        super(OrderBean.class, true);
    }

    @Override
    public int compare(WritableComparable a, WritableComparable b) {

        OrderBean aBean = (OrderBean) a;
        OrderBean bBean = (OrderBean) b;

        int result;

        if (aBean.getOrder_id() > bBean.getOrder_id()) {
            result = 1;
        } else if (aBean.getOrder_id() < bBean.getOrder_id()) {
            result = -1;
        } else {
            result = 0;
        }

        return result;
    }
}
 
 
 
29
 
 
 
1
import org.apache.hadoop.io.WritableComparable;
2
import org.apache.hadoop.io.WritableComparator;
3

4
//todo 自定义分组规则 订单号一样的来到同一个分组中
5
public class OrderGroupingComparator extends WritableComparator {
6

7
    protected OrderGroupingComparator() {
8
        super(OrderBean.class, true);
9
    }
10

11
    @Override
12
    public int compare(WritableComparable a, WritableComparable b) {
13

14
        OrderBean aBean = (OrderBean) a;
15
        OrderBean bBean = (OrderBean) b;
16

17
        int result;
18

19
        if (aBean.getOrder_id() > bBean.getOrder_id()) {
20
            result = 1;
21
        } else if (aBean.getOrder_id() < bBean.getOrder_id()) {
22
            result = -1;
23
        } else {
24
            result = 0;
25
        }
26

27
        return result;
28
    }
29
}
 
 

编写OrderReducer处理流程

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {

    @Override
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context)
            throws IOException, InterruptedException {
        System.out.println(key);
        for (NullWritable value : values) {
            System.out.println(value);
        }

        context.write(key, NullWritable.get());
    }
}
 
 
 
18
 
 
 
1
import org.apache.hadoop.io.NullWritable;
2
import org.apache.hadoop.mapreduce.Reducer;
3

4
import java.io.IOException;
5

6
public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
7

8
    @Override
9
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context)
10
            throws IOException, InterruptedException {
11
        System.out.println(key);
12
        for (NullWritable value : values) {
13
            System.out.println(value);
14
        }
15

16
        context.write(key, NullWritable.get());
17
    }
18
}
 
 

编写OrderDriver处理流程

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;

public class OrderDriver {

    public static void main(String[] args) throws Exception, IOException {

        // 1 获取配置信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 设置jar包加载路径
        job.setJarByClass(OrderDriver.class);

        // 3 加载map/reduce类
        job.setMapperClass(OrderMapper.class);
        job.setReducerClass(OrderReducer.class);

        // 4 设置map输出数据key和value类型
        job.setMapOutputKeyClass(OrderBean.class);
        job.setMapOutputValueClass(NullWritable.class);

        // 5 设置最终输出数据的key和value类型
        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);

        // 6 设置输入数据和输出数据路径
        FileInputFormat.setInputPaths(job, new Path("D:\\TiePiHeTao\\input"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\TiePiHeTao\\output"));

//		// 10 设置reduce端的分组
		job.setGroupingComparatorClass(OrderGroupingComparator.class);

        // 7 设置分区
        job.setPartitionerClass(OrderPartitioner.class);

        // 8 设置reduce个数
        job.setNumReduceTasks(3);

        // 9 提交
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}
 
 
 
49
 
 
 
1
import org.apache.hadoop.conf.Configuration;
2
import org.apache.hadoop.fs.Path;
3
import org.apache.hadoop.io.NullWritable;
4
import org.apache.hadoop.mapreduce.Job;
5
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
6
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
7
import java.io.IOException;
8

9
public class OrderDriver {
10

11
    public static void main(String[] args) throws Exception, IOException {
12

13
        // 1 获取配置信息
14
        Configuration conf = new Configuration();
15
        Job job = Job.getInstance(conf);
16

17
        // 2 设置jar包加载路径
18
        job.setJarByClass(OrderDriver.class);
19

20
        // 3 加载map/reduce类
21
        job.setMapperClass(OrderMapper.class);
22
        job.setReducerClass(OrderReducer.class);
23

24
        // 4 设置map输出数据key和value类型
25
        job.setMapOutputKeyClass(OrderBean.class);
26
        job.setMapOutputValueClass(NullWritable.class);
27

28
        // 5 设置最终输出数据的key和value类型
29
        job.setOutputKeyClass(OrderBean.class);
30
        job.setOutputValueClass(NullWritable.class);
31

32
        // 6 设置输入数据和输出数据路径
33
        FileInputFormat.setInputPaths(job, new Path("D:\\TiePiHeTao\\input"));
34
        FileOutputFormat.setOutputPath(job, new Path("D:\\TiePiHeTao\\output"));
35

36
//// 10 设置reduce端的分组
37
job.setGroupingComparatorClass(OrderGroupingComparator.class);
38

39
        // 7 设置分区
40
        job.setPartitionerClass(OrderPartitioner.class);
41

42
        // 8 设置reduce个数
43
        job.setNumReduceTasks(3);
44

45
        // 9 提交
46
        boolean result = job.waitForCompletion(true);
47
        System.exit(result ? 0 : 1);
48
    }
49
}
 
 
 

总结:

  • 分组:发生在数据调用reduce方法之前 相同key的作为一组去调用
  • 默认规则:key相同 为一组
  • 自定义分组:
  • 继承 WritableComparator
    重写compare方法  根据该方法返回的结果来判断是否相等 
    只要你指定返回为0  那么mr就认为相等
     
     
     
    3
     
     
     
    1
    继承 WritableComparator
    2
    重写compare方法  根据该方法返回的结果来判断是否相等 
    3
    只要你指定返回为0  那么mr就认为相等
     
     
  • 自定义分组如何生效
  • job.setGroupingComparatorClass(OrderGrouping.class);
     
     
     
    1
     
     
     
    1
    job.setGroupingComparatorClass(OrderGrouping.class);
     
     
  • 自定义排序和自定义分组的梳理
    • 自定义排序 正数 大于 、负数小于、零等于
    • 自定义分组 零相等 、非零不相等

 



posted @ 2019-09-14 20:57  DaBai的黑屋  阅读(494)  评论(0编辑  收藏  举报
Live2D