MapReduce案例WordCount
所需的 pom 依赖:
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.3</version>
</dependency>
</dependencies>
17
1
<dependencies>
2
<dependency>
3
<groupId>org.apache.hadoop</groupId>
4
<artifactId>hadoop-client</artifactId>
5
<version>2.7.3</version>
6
</dependency>
7
<dependency>
8
<groupId>org.apache.hadoop</groupId>
9
<artifactId>hadoop-common</artifactId>
10
<version>2.7.3</version>
11
</dependency>
12
<dependency>
13
<groupId>org.apache.hadoop</groupId>
14
<artifactId>hadoop-hdfs</artifactId>
15
<version>2.7.3</version>
16
</dependency>
17
</dependencies>
Mapper 实现:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
private Text k = new Text();
private LongWritable v = new LongWritable();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
// 分词
String[] words = line.split(" ");
// 输出
for (String word : words) {
k.set(word);
v.set(1L);
context.write(k, v);
}
}
}
1
import java.io.IOException;
2
import org.apache.hadoop.io.LongWritable;
3
import org.apache.hadoop.io.Text;
4
import org.apache.hadoop.mapreduce.Mapper;
5
6
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
7
8
private Text k = new Text();
9
private LongWritable v = new LongWritable();
10
11
12
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
13
String line = value.toString();
14
// 分词
15
String[] words = line.split(" ");
16
// 输出
17
for (String word : words) {
18
k.set(word);
19
v.set(1L);
20
context.write(k, v);
21
}
22
}
23
}
Reducer 实现:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
private LongWritable value = new LongWritable();
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
// 计数
for (LongWritable v : values) {
sum += v.get();
}
// 输出
value.set(sum);
context.write(key, value);
}
}
22
1
import java.io.IOException;
2
3
import org.apache.hadoop.io.LongWritable;
4
import org.apache.hadoop.io.Text;
5
import org.apache.hadoop.mapreduce.Reducer;
6
7
public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
8
9
private LongWritable value = new LongWritable();
10
11
12
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
13
long sum = 0;
14
// 计数
15
for (LongWritable v : values) {
16
sum += v.get();
17
}
18
// 输出
19
value.set(sum);
20
context.write(key, value);
21
}
22
}
Driver 实现:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Driver {
public static void main(String[] args) throws Exception {
args = new String[]{"D:/EclipseWorkspace/mapreducetop10/hello.txt",
"D:/EclipseWorkspace/mapreducetop10/output"};
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 指明程序的入口
job.setJarByClass(Driver.class);
// 指明mapper
job.setMapperClass(WordCountMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
// 指明reducer
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 指明任务的输入输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 启动任务
job.waitForCompletion(true);
}
}
37
1
import org.apache.hadoop.conf.Configuration;
2
import org.apache.hadoop.fs.Path;
3
import org.apache.hadoop.io.LongWritable;
4
import org.apache.hadoop.io.Text;
5
import org.apache.hadoop.mapreduce.Job;
6
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
7
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
8
9
public class Driver {
10
11
public static void main(String[] args) throws Exception {
12
args = new String[]{"D:/EclipseWorkspace/mapreducetop10/hello.txt",
13
"D:/EclipseWorkspace/mapreducetop10/output"};
14
15
Configuration conf = new Configuration();
16
Job job = Job.getInstance(conf);
17
// 指明程序的入口
18
job.setJarByClass(Driver.class);
19
20
// 指明mapper
21
job.setMapperClass(WordCountMapper.class);
22
job.setMapOutputKeyClass(Text.class);
23
job.setMapOutputValueClass(LongWritable.class);
24
25
// 指明reducer
26
job.setReducerClass(WordCountReducer.class);
27
job.setOutputKeyClass(Text.class);
28
job.setOutputValueClass(LongWritable.class);
29
30
// 指明任务的输入输出路径
31
FileInputFormat.setInputPaths(job, new Path(args[0]));
32
FileOutputFormat.setOutputPath(job, new Path(args[1]));
33
34
// 启动任务
35
job.waitForCompletion(true);
36
}
37
}
WordCount执行过程:(图示)
本文版权归作者和博客园共有,欢迎转载,但必须给出原文链接,并保留此段声明,否则保留追究法律责任的权利。