机器学习—回归2-4(岭回归)

使用岭回归根据多个因素预测医疗费用

步骤流程

数据集链接:https://www.cnblogs.com/ojbtospark/p/16005626.html

1. 导入包

In [1]:
# 导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

 

2. 导入数据集

In [2]:
# 导入数据集
data = pd.read_csv('insurance.csv')
data.head()
Out[2]:
 agesexbmichildrensmokerregioncharges
0 19 female 27.900 0 yes southwest 16884.92400
1 18 male 33.770 1 no southeast 1725.55230
2 28 male 33.000 3 no southeast 4449.46200
3 33 male 22.705 0 no northwest 21984.47061
4 32 male 28.880 0 no northwest 3866.85520
 

3. 数据预处理

3.1 检测缺失值

In [3]:
# 检测缺失值
null_df = data.isnull().sum()
null_df
Out[3]:
age         0
sex         0
bmi         0
children    0
smoker      0
region      0
charges     0
dtype: int64

3.2 标签编码&独热编码

In [4]:
# 标签编码&独热编码
data = pd.get_dummies(data, drop_first = True)
data.head()
Out[4]:
 agebmichildrenchargessex_malesmoker_yesregion_northwestregion_southeastregion_southwest
0 19 27.900 0 16884.92400 0 1 0 0 1
1 18 33.770 1 1725.55230 1 0 0 1 0
2 28 33.000 3 4449.46200 1 0 0 1 0
3 33 22.705 0 21984.47061 1 0 1 0 0
4 32 28.880 0 3866.85520 1 0 1 0 0

3.3 得到自变量和因变量

In [5]:
# 得到自变量和因变量
y = data['charges'].values
data = data.drop(['charges'], axis = 1)
x = data.values

3.4 拆分训练集和测试集

In [6]:
# 拆分训练集和测试集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 1)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
(1070, 8)
(268, 8)
(1070,)
(268,)
 

4. 构建不同参数的岭回归模型

4.1 模型1:构建岭回归模型

4.1.1 构建岭回归模型

In [7]:
# 构建不同参数的岭回归模型
# 模型1:构建岭回归模型(alpha = 20)
from sklearn.linear_model import Ridge
regressor = Ridge(alpha = 20, normalize = True, fit_intercept = True)
regressor.fit(x_train, y_train)
Out[7]:
Ridge(alpha=20, normalize=True)

4.1.2 得到数学表达式

In [8]:
# 得到数学表达式
print('数学表达式是:\n Charges = ', end='')
columns = data.columns
coefs = regressor.coef_
for i in range(len(columns)):
    print('%s * %.2f + ' %(columns[i], coefs[i]), end='')
print(regressor.intercept_)
数学表达式是:
 Charges = age * 12.48 + bmi * 17.21 + children * 14.86 + sex_male * 60.23 + smoker_yes * 1121.22 + region_northwest * -34.52 + region_southeast * 61.62 + region_southwest * -33.53 + 11938.446490743021

4.1.3 预测测试集

In [9]:
# 预测测试集
y_pred = regressor.predict(x_test)

4.1.4 得到模型MSE

In [10]:
# 得到模型 MSE
from sklearn.metrics import mean_squared_error
mse_score = mean_squared_error(y_test, y_pred)
print('alpha=20时,岭回归模型的MSE是:' , format(mse_score, ','))
alpha=20时,岭回归模型的MSE是: 138,769,173.1285671

4.2 模型2:构建岭回归模型

In [11]:
# 模型2:构建岭回归模型(alpha = 0.1)
regressor = Ridge(alpha = 0.1, normalize = True, fit_intercept = True)
regressor.fit(x_train, y_train)
Out[11]:
Ridge(alpha=0.1, normalize=True)
In [12]:
# 得到线性表达式
print('数学表达式是:\n Charges = ', end='')
columns = data.columns
coefs = regressor.coef_
for i in range(len(columns)):
    print('%s * %.2f + ' %(columns[i], coefs[i]), end='')
print(regressor.intercept_)
数学表达式是:
 Charges = age * 234.53 + bmi * 291.63 + children * 361.72 + sex_male * -88.02 + smoker_yes * 21586.00 + region_northwest * -266.87 + region_southeast * -672.40 + region_southwest * -691.71 + -9237.600606458109
In [13]:
# 预测测试集
y_pred = regressor.predict(x_test)
In [14]:
# 得到模型的MSE
mse_score = mean_squared_error(y_test, y_pred)
print('alpha=0.1时,岭回归模型的MSE是:' , format(mse_score, ','))
alpha=0.1时,岭回归模型的MSE是: 36,841,099.26516503

4.3 模型3:构建岭回归模型

In [15]:
# 模型3:构建岭回归模型(alpha = 0.01)
regressor = Ridge(alpha = 0.01, normalize = True, fit_intercept = True)
regressor.fit(x_train, y_train)
Out[15]:
Ridge(alpha=0.01, normalize=True)
In [16]:
# 得到线性表达式
print('数学表达式是:\n Charges = ', end='')
columns = data.columns
coefs = regressor.coef_
for i in range(len(columns)):
    print('%s * %.2f + ' %(columns[i], coefs[i]), end='')
print(regressor.intercept_)
数学表达式是:
 Charges = age * 255.00 + bmi * 318.27 + children * 402.86 + sex_male * -223.99 + smoker_yes * 23546.28 + region_northwest * -377.66 + region_southeast * -992.59 + region_southwest * -875.29 + -11075.028462288014
In [17]:
# 预测测试集
y_pred = regressor.predict(x_test)
In [18]:
# 得到模型的MSE
mse_score = mean_squared_error(y_test, y_pred)
print('alpha=0.01时,岭回归模型的MSE是:' , format(mse_score, ','))
alpha=0.01时,岭回归模型的MSE是: 35,539,055.332710184

4.4 模型4:构建岭回归模型

In [19]:
# 模型4:构建岭回归模型(alpha = 0.0001)
regressor = Ridge(alpha = 0.0001, normalize = True, fit_intercept = True)
regressor.fit(x_train, y_train)
Out[19]:
Ridge(alpha=0.0001, normalize=True)
In [20]:
# 得到线性表达式
print('数学表达式是:\n Charges = ', end='')
columns = data.columns
coefs = regressor.coef_
for i in range(len(columns)):
    print('%s * %.2f + ' %(columns[i], coefs[i]), end='')
print(regressor.intercept_)
数学表达式是:
 Charges = age * 257.47 + bmi * 321.59 + children * 408.01 + sex_male * -241.97 + smoker_yes * 23784.06 + region_northwest * -395.90 + region_southeast * -1037.90 + region_southwest * -902.75 + -11295.364555495733
In [21]:
# 预测测试集
y_pred = regressor.predict(x_test)
In [22]:
# 得到模型的MSE
mse_score = mean_squared_error(y_test, y_pred)
print('alpha=0.0001时,岭回归模型的MSE是:' , format(mse_score, ','))
alpha=0.0001时,岭回归模型的MSE是: 35,479,846.30114783
 

结论: 由上面4个模型可见,不同的模型超参数对岭回归模型性能的影响不同。

 

 

 

posted @ 2022-03-15 16:47  Theext  阅读(304)  评论(0)    收藏  举报