Luogu P2034 选择数字 题解
闲扯
单调队列优化 \(DP\) 的第一题,结果死在了一些很奇怪的操作上。。。
题面
Solution
定义 \(dp_i\) 表示考虑了前 \(i\) 个数,能够选取的最大价值。
因为最多只能连续选 \(k\) 个,所以我们可以在 \([i-k,i-1]\) 中选取一个断点 \(j\) ,表示这个点不选,那么此时 \(dp_i=\min(dp_{j-1}-sum_j)+sum[i]\) 。
这时我们找到的 \(dp_i\) 时端点 \(i\) 必选的情况,不能代表所有的情况,所以对 \(dp_i,dp_{i-1}\) 取一个 \(\max\) ,这样就可以包含考虑前 \(i\) 个的所有情况了。
Code
#include<bits/stdc++.h>
#define del(a,i) memset(a,i,sizeof(a))
#define ll long long
#define inl inline
#define il inl void
#define it inl int
#define ill inl ll
#define re register
#define ri re int
#define rl re ll
#define mid ((l+r)>>1)
#define lowbit(x) (x&(-x))
#define INF 0x3f3f3f3f
using namespace std;
template<class T>il read(T &x){
int f=1;char k=getchar();x=0;
for(;k>'9'||k<'0';k=getchar()) if(k=='-') f=-1;
for(;k>='0'&&k<='9';k=getchar()) x=(x<<3)+(x<<1)+k-'0';
x*=f;
}
template<class T>il print(T x){
if(x/10) print(x/10);
putchar(x%10+'0');
}
ll mul(ll a,ll b,ll mod){long double c=1.;return (a*b-(ll)(c*a*b/mod)*mod)%mod;}
it qpow(int x,int m,int mod){
int res=1,bas=x%mod;
while(m){
if(m&1) res=(res*bas)%mod;
bas=(bas*bas)%mod,m>>=1;
}
return res%mod;
}
const int MAXN = 1e5+5;
int n,k,val,q[MAXN],l=1,r;
ll sum[MAXN],dp[MAXN],ans;
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n),read(k);
for(ri i=1;i<=n;++i) read(val),sum[i]=sum[i-1]+val;
dp[1]=sum[1],q[++r]=1;
for(ri i=2;i<=k;++i){
dp[i]=sum[i];
while(l<=r&&dp[q[r]-1]-sum[q[r]]<=dp[i-1]-sum[i]) --r;
q[++r]=i;
}
for(ri i=k+1;i<=n;++i){
while(l<=r&&q[l]<i-k) ++l;
dp[i]=sum[i]+dp[q[l]-1]-sum[q[l]];
while(l<=r&&dp[q[r]-1]-sum[q[r]]<=dp[i-1]-sum[i]) --r;
q[++r]=i;
dp[i]=max(dp[i],dp[i-1]);
}
print(dp[n]);
return 0;
}
总结
蒟蒻的第一道用单调队列优化 \(DP\) 的题,但绝不是最后一道。
这道题还是请教的机房里的 \(Dalao\) \(@jklover\) ,但考场上呢?
所以还是要加油强化自己的能力啊!!!