poj 1065 Wooden Sticks(偏序)
Wooden Sticks
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 24062 | Accepted: 10369 |
Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
Sample Output
2 1 3
Source
题意:
给出n个二元组(a,b),将这n个二元组分成k个部分,每个部分内ai+1>=ai && bi+1>=bi
问最少划分数
先将给出的二元组从小到大排序
定义(A,≤)是偏序集,≤ 表示 xi+1>=xi && yi+1>=yi
那么根据 Dilworth 定理 及其 对偶定理
定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。
定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。
定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。
这里最少划分数即为最少链数=最大反链长度
即答案=最长严格递减子序列长度
#include<cstdio> #include<iostream> #include<algorithm> #define N 5001 using namespace std; struct node { int a,b; }e[N]; int s,f[N]; bool cmp(node p,node q) { if(p.a!=q.a) return p.a<q.a; return p.b<q.b; } int find(int w) { int l=1,r=s,mid,tmp=-1; while(l<=r) { mid=l+r>>1; if(f[mid]<=w) tmp=mid,r=mid-1; else l=mid+1; } return tmp; } int main() { int T,n,pos; scanf("%d",&T); while(T--) { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d%d",&e[i].a,&e[i].b); sort(e+1,e+n+1,cmp); f[s=0]=2e9; for(int i=1;i<=n;i++) if(e[i].b<f[s]) f[++s]=e[i].b; else { pos=find(e[i].b); if(pos>0) f[pos]=e[i].b; } printf("%d\n",s); } }