hdu 4763 Theme Section
Theme Section
http://acm.hdu.edu.cn/showproblem.php?pid=4763
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
It's time for music! A lot of popular musicians are
invited to join us in the music festival. Each of them will play one of their
representative songs. To make the programs more interesting and challenging, the
hosts are going to add some constraints to the rhythm of the songs, i.e., each
song is required to have a 'theme section'. The theme section shall be played at
the beginning, the middle, and the end of each song. More specifically, given a
theme section E, the song will be in the format of 'EAEBE', where section A and
section B could have arbitrary number of notes. Note that there are 26 types of
notes, denoted by lower case letters 'a' - 'z'.
To get well prepared for the festival, the hosts want to know the maximum possible length of the theme section of each song. Can you help us?
To get well prepared for the festival, the hosts want to know the maximum possible length of the theme section of each song. Can you help us?
Input
The integer N in the first line denotes the total
number of songs in the festival. Each of the following N lines consists of one
string, indicating the notes of the i-th (1 <= i <= N) song. The length of
the string will not exceed 10^6.
Output
There will be N lines in the output, where the i-th
line denotes the maximum possible length of the theme section of the i-th
song.
Sample Input
5
xy
abc
aaa
aaaaba
aaxoaaaaa
Sample Output
0
0
1
1
2
Source
Recommend
题意:求字符串中满足 EAEBE 最长的E
(A与B可以相同,也可以没有)
扩展kmp求出next数组
满足第一个E和最后一个E的条件是 nxt[i]=len-nxt[i]
再在nxt[i]——i-nxt[i]范围内查找最大的nxt[],如果>=nxt[i],那么当前的nxt[i]就是合法的
查找区间最大值我用的线段树
#include<cstdio> #include<cstring> #include<algorithm> #define N 1000011 using namespace std; char s[N]; int len,nxt[N]; struct node { int l,r,maxn; }tr[N*4]; void getnxt() { int a=0; nxt[0]=len; while(a+1<len && s[a]==s[a+1]) a++; nxt[1]=a; int p,l,j; a=1; for(int k=2;k<len;k++) { p=a+nxt[a]-1; l=nxt[k-a]; if(k-1+l>=p) { j=p-k+1>0 ? p-k+1 : 0; while(k+j<len && s[k+j]==s[j]) j++; nxt[k]=j; a=k; } else nxt[k]=l; } } void build(int k,int l,int r) { tr[k].l=l; tr[k].r=r; if(l==r) { tr[k].maxn=nxt[l]; return; } int mid=l+r>>1; build(k<<1,l,mid); build(k<<1|1,mid+1,r); tr[k].maxn=max(tr[k<<1].maxn,tr[k<<1|1].maxn); } int query(int k,int opl,int opr) { if(tr[k].l>=opl && tr[k].r<=opr) return tr[k].maxn; int mid=tr[k].l+tr[k].r>>1; int p=0,q=0; if(opl<=mid) p=query(k<<1,opl,opr); if(opr>mid) q=query(k<<1|1,opl,opr); return max(p,q); } int main() { int n,ans; scanf("%d",&n); while(n--) { scanf("%s",s); len=strlen(s); getnxt(); build(1,0,len); ans=0; for(int i=2;i<len;i++) { if(nxt[i]!=len-i) continue; if(i-nxt[i]<nxt[i]) continue; if(query(1,nxt[i],i-nxt[i])>=nxt[i]) { ans=nxt[i]; break; } } printf("%d\n",ans); } }