uva 11178 Morley's Theorem
https://vjudge.net/problem/UVA-11178
题意:三角形ABC的三等分线相交成等边三角形DEF
给出ABC坐标,输出DEF坐标
直线旋转求交点
#include<cmath> #include<cstdio> using namespace std; struct Point { double x,y; Point (double x=0,double y=0):x(x),y(y) { } void output() { printf("%lf %lf ",x,y); } }; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); } Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); } Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); } Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } struct Geometry { double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A,A)); } double Angle(Vector A,Vector B) { return acos(Dot(A,B)/Length(A)/Length(B)); } Vector Rotate(Vector A,double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } Point GetLineIntersection(Point P,Vector v,Point Q,Vector w) { Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } }; Geometry Two_dimensional; int main() { int t; scanf("%d",&t); Point A,B,C,D,E,F; double a,b,c; Point T1,T2; while(t--) { scanf("%lf%lf",&A.x,&A.y); scanf("%lf%lf",&B.x,&B.y); scanf("%lf%lf",&C.x,&C.y); a=Two_dimensional.Angle(B-A,C-A); b=Two_dimensional.Angle(A-B,C-B); c=Two_dimensional.Angle(A-C,B-C); T1=Two_dimensional.Rotate(C-B,b/3); T2=Two_dimensional.Rotate(B-C,-c/3); D=Two_dimensional.GetLineIntersection(B,T1,C,T2); T1=Two_dimensional.Rotate(A-C,c/3); T2=Two_dimensional.Rotate(C-A,-a/3); E=Two_dimensional.GetLineIntersection(C,T1,A,T2); T1=Two_dimensional.Rotate(B-A,a/3); T2=Two_dimensional.Rotate(A-B,-b/3); F=Two_dimensional.GetLineIntersection(A,T1,B,T2); D.output(); E.output(); F.output(); puts(""); } }