【模板】网络最大流
https://www.luogu.org/problem/show?pid=3376
题目描述
如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。
输入输出格式
输入格式:
第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。
接下来M行每行包含三个正整数ui、vi、wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi)
输出格式:
一行,包含一个正整数,即为该网络的最大流。
输入输出样例
输入样例#1:
4 5 4 3 4 2 30 4 3 20 2 3 20 2 1 30 1 3 40
输出样例#1:
50
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=25
对于70%的数据:N<=200,M<=1000
对于100%的数据:N<=10000,M<=100000
样例说明:
题目中存在3条路径:
4-->2-->3,该路线可通过20的流量
4-->3,可通过20的流量
4-->2-->1-->3,可通过10的流量(边4-->2之前已经耗费了20的流量)
故流量总计20+20+10=50。输出50。
#include<cstdio> #include<queue> #include<algorithm> #define inf 1e9 using namespace std; int n,m,tot=1; int src,decc; int front[10001],nextt[200001],to[200001],cnt[10001],lev[10001]; int cap[200001],ans; queue<int>q; void add(int u,int v,int w) { to[++tot]=v;cap[tot]=w;nextt[tot]=front[u];front[u]=tot; to[++tot]=u;cap[tot]=0;nextt[tot]=front[v];front[v]=tot; } bool bfs() { for(int i=0;i<=n;i++) {cnt[i]=front[i];lev[i]=-1;} while(!q.empty()) q.pop(); q.push(src);lev[src]=0; while(!q.empty()) { int now=q.front();q.pop(); for(int i=front[now];i!=0;i=nextt[i]) { int t=to[i]; if(cap[i]>0&&lev[t]==-1) { q.push(t); lev[t]=lev[now]+1; if(t==decc) return true; } } } return false; } int dinic(int now,int flow) { if(now==decc) return flow; int delta,rest=0; for(int & i=cnt[now];i!=0;i=nextt[i]) { int t=to[i]; if(lev[t]==lev[now]+1&&cap[i]>0) { delta=dinic(t,min(cap[i],flow-rest)); if(delta) { cap[i]-=delta;cap[i^1]+=delta; rest+=delta;if(rest==flow) break; } } } if(rest!=flow) lev[now]=-1; return rest; } int main() { scanf("%d%d%d%d",&n,&m,&src,&decc); int a,b,c; for(int i=1;i<=m;i++) { scanf("%d%d%d",&a,&b,&c); add(a,b,c); } while(bfs()) ans+=dinic(src,inf); printf("%d\n",ans); }