poj 1149 PIGS
PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house. Write a program that will find the maximum number of pigs that he can sell on that day.
An unlimited number of pigs can be placed in every pig-house. Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
Source
题目大意:
Mirko 养着一些猪, 猪关在一些猪圈里面, 猪圈是锁着的他自己没有钥匙 (汗)
只有要来买猪的顾客才有钥匙, 顾客依次来每个顾客会用他的钥匙打开一些猪圈买
走一些猪, 然后锁上.
在锁上之前 Mirko 有机会重新分配这几个已打开猪圈的猪, 现在给出一开始每个猪
圈的猪数, 每个顾客所有的钥匙和要买走的猪数问 Mirko 最多能卖掉几头猪
只有要来买猪的顾客才有钥匙, 顾客依次来每个顾客会用他的钥匙打开一些猪圈买
走一些猪, 然后锁上.
在锁上之前 Mirko 有机会重新分配这几个已打开猪圈的猪, 现在给出一开始每个猪
圈的猪数, 每个顾客所有的钥匙和要买走的猪数问 Mirko 最多能卖掉几头猪
以样例输入为例
有m个猪圈,n个顾客
接下来一行有m个数,表示每个猪圈开始猪的数量
接下来n行,
每行第一个数表示第i个顾客手里的钥匙数p,后面p个数表示是哪个猪圈的钥匙,最后一个数表示他要买的猪的数量
最大流
很容易想到的建图方法
上图修改如下:
但是这样会有100000左右个点,TLE
所以我们要对点进行合并
合并规则:
规律 1. 如果几个节点的流量的来源完全相同,则可以把它们合并成一个。
规律 2. 如果几个节点的流量的去向完全相同,则可以把它们合并成一个。
规律 3. 如果从点 u 到点 v 有一条容量为 +∞ 的边,并且 u 是 v 的唯一流量来源,或者 v 是 u 的唯一流量去向,则可以把 u 和 v 合并成一个节点。
规律 3. 如果从点 u 到点 v 有一条容量为 +∞ 的边,并且 u 是 v 的唯一流量来源,或者 v 是 u 的唯一流量去向,则可以把 u 和 v 合并成一个节点。
所以最终构图方式:
1、由源点向每个猪圈第一个要访问的顾客连一条边,流量为一开始猪的数量,如果源点向同一个顾客有多条边,就把他们合并为1条边,流量相加。
2、如果顾客j在顾客i后访问猪圈k,则由i向j连一条流量为inf的边
3、每个顾客向汇点连一条边,流量为他要买的猪的数量
#include<cstdio> #include<queue> #include<cstring> #include<algorithm> #include<iostream> #define inf 600001 using namespace std; int n,m,qq,tot=1,ans; int src,decc; int front[112],cap[22001],lev[112],cnt[112],nextt[22001],to[22001]; queue<int>q; int pre[1002],buy[112],kai[112][112],last[1002]; void add(int u,int v,int w) { to[++tot]=v;cap[tot]=w;nextt[tot]=front[u];front[u]=tot; to[++tot]=u;cap[tot]=0;nextt[tot]=front[v];front[v]=tot; } bool bfs() { for(int i=0;i<=m+1;i++) {cnt[i]=front[i];lev[i]=-1;} while(!q.empty()) q.pop(); q.push(src);lev[src]=0; while(!q.empty()) { int now=q.front();q.pop(); for(int i=front[now];i!=0;i=nextt[i]) { int t=to[i]; if(cap[i]>0&&lev[t]==-1) { q.push(t); lev[t]=lev[now]+1; if(t==decc) return true; } } } return false; } int dinic(int now,int flow) { if(now==decc) return flow; int delta,rest=0; for(int & i=cnt[now];i!=0;i=nextt[i]) { int t=to[i]; if(lev[t]==lev[now]+1&&cap[i]>0) { delta=dinic(t,min(cap[i],flow-rest)); if(delta) { cap[i]-=delta;cap[i^1]+=delta; rest+=delta;if(rest==flow) break; } } } if(rest!=flow) lev[now]=-1; return rest; } int main() { scanf("%d%d",&n,&m); int p,x; for(int i=1;i<=n;i++) scanf("%d",&pre[i]); for(int i=1;i<=m;i++) { scanf("%d",&p); for(int j=1;j<=p;j++) { scanf("%d",&x); if(!last[x]) { kai[0][i]+=pre[x]; last[x]=i; } else kai[last[x]][i]=inf; } scanf("%d",&buy[i]); } decc=m+1; for(int i=0;i<=m;i++) for(int j=0;j<=m;j++) if(kai[i][j]) add(i,j,kai[i][j]); for(int i=1;i<=m;i++) add(i,decc,buy[i]); while(bfs()) ans+=dinic(src,inf); printf("%d",ans); }