Educational Codeforces Round 80 D. Minimax Problem
http://codeforces.com/contest/1288/problem/D
题意:
给出一张n*m的表a[n][m],m<=8,从中任选两行i,j
令b[k]=max(a[i][k],a[j]k])
最大化 min(b[k])
二分答案x
若a[i][j]>=x,令c[i][j]=1,否则c[i][j]=0
若最终答案>=x,则存在i,j,满足c中第i行和第j行 按位或 的结果都是1
枚举行肯定超时
m<=8,每一行的01状态不超过256种,所以可以枚举行的01状态
可以用bitset做
#include<cmath> #include<cstdio> #include<bitset> #include<cstring> #include<iostream> using namespace std; #define N 300001 int n,m,a[N][8]; bitset<8>b[N]; int vis[256]; int use[256][256],siz[256]; int all; int turn[N]; bool check(int x) { memset(vis,0,sizeof(vis)); for(int i=1;i<=n;++i) { b[i].reset(); for(int j=0;j<m;++j) if(a[i][j]>=x) b[i].set(j); vis[b[i].to_ulong()]++; } for(int i=0;i<=all;++i) if(vis[i]) for(int j=1;j<=siz[i];++j) if(vis[use[i][j]]) return true; return false; } void solve(int x) { memset(vis,0,sizeof(vis)); for(int i=1;i<=n;++i) { b[i].reset(); for(int j=0;j<m;++j) if(a[i][j]>=x) b[i].set(j); vis[b[i].to_ulong()]++; turn[i]=b[i].to_ulong(); } int p=-1,q; for(int i=0;i<=all && p==-1;++i) if(vis[i]) for(int j=1;j<=siz[i];++j) if(vis[use[i][j]]) { p=i; q=use[i][j]; break; } int pp,qq; for(int i=1;i<=n;++i) { if(turn[i]==p) pp=i; if(turn[i]==q) qq=i; } printf("%d %d",pp,qq); } int main() { scanf("%d%d",&n,&m); for(int i=1;i<=n;++i) for(int j=0;j<m;++j) scanf("%d",&a[i][j]); int l=0,r=1e9,mid,mx; all=pow(2,m)-1; for(int i=0;i<=all;++i) for(int j=i;j<=all;++j) if((i|j)==all) use[i][++siz[i]]=j; while(l<=r) { mid=l+r>>1; if(check(mid)) mx=mid,l=mid+1; else r=mid-1; } solve(mx); return 0; }
You are given nn arrays a1a1 , a2a2 , ..., anan ; each array consists of exactly mm integers. We denote the yy -th element of the xx -th array as ax,yax,y .
You have to choose two arrays aiai and ajaj (1≤i,j≤n1≤i,j≤n , it is possible that i=ji=j ). After that, you will obtain a new array bb consisting of mm integers, such that for every k∈[1,m]k∈[1,m] bk=max(ai,k,aj,k)bk=max(ai,k,aj,k) .
Your goal is to choose ii and jj so that the value of mink=1mbkmink=1mbk is maximum possible.
The first line contains two integers nn and mm (1≤n≤3⋅1051≤n≤3⋅105 , 1≤m≤81≤m≤8 ) — the number of arrays and the number of elements in each array, respectively.
Then nn lines follow, the xx -th line contains the array axax represented by mm integers ax,1ax,1 , ax,2ax,2 , ..., ax,max,m (0≤ax,y≤1090≤ax,y≤109 ).
Print two integers ii and jj (1≤i,j≤n1≤i,j≤n , it is possible that i=ji=j ) — the indices of the two arrays you have to choose so that the value of mink=1mbkmink=1mbk is maximum possible. If there are multiple answers, print any of them.
6 5 5 0 3 1 2 1 8 9 1 3 1 2 3 4 5 9 1 0 3 7 2 3 0 6 3 6 4 1 7 0
1 5