猫狗数据集

import numpy as np
import pickle
import cv2
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt

#mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
train_data = {b'data': [], b'labels': []}
with open("D:/TensorFlow_gpu/animal.pickle", mode='rb') as file:
data = pickle.load(file, encoding='bytes')
train_data[b'data'] += list(data['train_images'])
train_data[b'labels'] += list(data['train_label'])

train_epochs = 802 # 训练轮数
batch_size = 40 # 随机出去数据大小
display_step = 10 # 显示训练结果的间隔
learning_rate = 0.000001 # 学习效率
drop_prob = 0.2 # 正则化,丢弃比例
fch_nodes = 256 # 全连接隐藏层神经元的个数

def weight_init(shape):
weights = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float32)#符合正太分布mean=0
#weights = tf.truncated_normal(shape, mean=0.01, stddev=0.1, dtype=tf.float32)
return tf.Variable(weights)


# 偏置的初始化
def biases_init(shape):
biases = tf.random_normal(shape, dtype=tf.float32)
# biases = tf.random_normal(shape, mean=-0.01, stddev=0.1, dtype=tf.float32)
return tf.Variable(biases)


# 随机选取mini_batch
def get_random_batchdata(n_samples, batchsize):
start_index = np.random.randint(0, n_samples - batchsize)
return (start_index, start_index + batchsize)


def xavier_init(layer1, layer2, constant=1):
Min = -constant * np.sqrt(6.0 / (layer1 + layer2))
Max = constant * np.sqrt(6.0 / (layer1 + layer2))
return tf.Variable(tf.random_uniform((layer1, layer2), minval=Min, maxval=Max, dtype=tf.float32))


def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


x = tf.placeholder(tf.float32, [None, 224,224,3])
y = tf.placeholder(tf.float32, [None, 2])
# 把灰度图像一维向量,转换为28x28二维结构
x_image = x

w_conv1 = weight_init([3, 3, 3, 96]) # 3*3,深度为3,96
b_conv1 = biases_init([96])
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) # 输出张量的尺寸:112
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_init([3, 3, 96, 96])
b_conv2 = biases_init([96])
h_conv2 = tf.nn.tanh(conv2d(h_pool1, W_conv2) + b_conv2)#输出是56
h_pool2 = max_pool_2x2(h_conv2)#池化后输出16*16*96
#2-1
W_conv3 = weight_init([3, 3, 96, 128])
b_conv3 = biases_init([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)#输出28
h_pool3 = max_pool_2x2(h_conv3)#池化后输出16*16*96
#第2层卷积2-2

W_conv4 = weight_init([3, 3, 128, 128])
b_conv4 = biases_init([128])
h_conv4 = tf.nn.tanh(conv2d(h_pool3, W_conv4) + b_conv4)#14
h_pool4 = max_pool_2x2(h_conv4)#池化输出8*8*128
#3-1
W_conv5 = weight_init([3, 3, 128, 256])
b_conv5 = biases_init([256])
h_conv5 = tf.nn.relu(conv2d(h_pool4, W_conv5) + b_conv5)#7*7*256
h_pool5 = max_pool_2x2(h_conv5)#

h_pool5_flat = tf.reshape(h_pool5, [-1, 7 * 7 * 256])

w_fc1 = xavier_init(7 * 7 * 256, fch_nodes)
b_fc1 = biases_init([fch_nodes])
h_fc1 = tf.nn.relu(tf.matmul(h_pool5_flat, w_fc1) + b_fc1)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob=drop_prob)

# 隐藏层与输出层权重初始化
w_fc2 = xavier_init(fch_nodes, 2)
b_fc2 = biases_init([2])

# 未激活的输出
y_ = tf.add(tf.matmul(h_fc1, w_fc2), b_fc2)
#y_ = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2)


# 激活后的输出
y_out = tf.nn.softmax(y_)
#y_out = tf.nn.sigmoid(y_)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_out), reduction_indices=[1]))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
#optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)

# 准确率
# 每个样本的预测结果是一个(1,10)的vector
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_out, 1))
# tf.cast把bool值转换为浮点数
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
#mnist = input_data.read_data_sets('MNIST/mnist', one_hot=True)
n_samples = int(1800)
total_batches = int(n_samples / batch_size)

#x_train = np.array(train_data[b'data']) / 255
x_train = np.array(train_data[b'data'])
y_train = np.array(pd.get_dummies(train_data[b'labels']))
#x_test = test_data[b'data'] / 255
#y_test = np.array(pd.get_dummies(test_data[b'labels']))

input_tupian = np.zeros((1000, 1000))

with tf.Session() as sess:
sess.run(init)
Cost = []
Accuracy = []
variable_names = [v.name for v in tf.trainable_variables()]
for i in range(train_epochs):
for j in range(45):
#print(x_train.shape)
start_index, end_index = get_random_batchdata(n_samples, batch_size)
batch_x =x_train[start_index: end_index]
#print(batch_x)
batch_y =y_train[start_index: end_index]
_, cost, accu = sess.run([optimizer, cross_entropy, accuracy], feed_dict={x: batch_x, y: batch_y})
Cost.append(cost)
Accuracy.append(accu)

print("step %d, trainning accuracy, %g loss %g" % (i, accu, cost))
# with open('E:/TensorFlow/cifar_10_vggnet_all/train_acc.txt', 'w') as f:
# f.write(str(Accuracy))
# f.write(',')
# with open('E:/TensorFlow/cifar_10_vggnet_all/train_cost.txt', 'w') as f:
# f.write(str(Cost))
# f.write(',')
if (i % 20 == 0):
values = sess.run(variable_names)
# A1=values[0]
# A2=A1.transpose([3,2,0,1])#权重如何transpose是还原回去的?
# with open('E:/TensorFlow/cifar_10_vggnet_all/conv1_qz' + str(i) + '.txt', 'w') as f:
# for zjj in range(96):
# for rgb in range(3):
# for xjj in range(3):
# for yjj in range(3):
# #f.write(str(A2[zjj][rgb][xjj][yjj]))
# f.write(str(A2[zjj][xjj][yjj][rgb]))
# f.write(',')
# f.write('\n')
print('Epoch : %d , Cost : %.7f,accu: %.5f' % (i + 1, cost, accu))
input_image = x_train[3:5]

IMG=np.array(train_data[b'data'])
#print("yyyyyyyyy___________",IMG.shape)
#
# for i in range(10):
# plt.figure(1)
# plt.imshow(cv2.cvtColor(IMG[i], cv2.COLOR_BGR2RGB))#BGR转RGB
# plt.savefig("pic" + str(i) + "D.png")

# img=np.array(input_image)*255
# print("XXXXXXXXXXX___________", img.shape)
# plt.figure(1)
# plt.imshow(img[0])
# plt.show()


#plt.imshow(OPIMAGE)
# fig3, ax3 = plt.subplots(nrows=1, ncols=12, figsize=(12, 1))
# for isb in range(2):
# ax3[isb].imshow(OPIMAGE[isb][0])
# plt.title('Con')
# plt.savefig("pic_"+str(i)+"RANGE.png")

h_conv_1 = sess.run(h_conv1, feed_dict={x: input_image})
h_conv_reshape_1 = sess.run(tf.transpose(h_conv_1, [3, 0, 1, 2]))
h_pool_1 = sess.run(h_pool1, feed_dict={x: input_image})
h_pool_reshape_1 = sess.run(tf.transpose(h_pool_1, [3, 0, 1, 2]))
#print("h_conv1___________", h_conv_reshape_1.shape)
#print("_______h_conv1___________", h_pool_reshape_1.shape)
fig5, ax5 = plt.subplots(nrows=1, ncols=12, figsize=(12, 1))
for isb in range(12):
ax5[isb].imshow(h_conv_reshape_1[isb][0])
plt.title('Conv2 32x14x14')
plt.savefig("conv_PIC1_"+str(i)+"RANGE.png")
#plt.close()
fig2, ax2 = plt.subplots(nrows=1, ncols=12, figsize=(12, 1))
for isb in range(12):
ax2[isb].imshow(h_conv_reshape_1[isb][1])
plt.title('Conv2 32x14x14')
plt.savefig("conv_PIC2_"+str(i)+"RANGE.png")
posted @ 2019-07-01 17:37  The_kat  阅读(2418)  评论(0编辑  收藏  举报