SP28304 ADATEAMS - Ada and Teams 题解
前置知识
解法
简单的排列组合。从 \(n\) 个学校中选出 \(a\) 个学校,共有 \(\dbinom{n}{a}\) 种不同的方案数。选出的 \(a\) 个学校中每所学校再从 \(b\) 个人中选出 \(d\) 个人,共有 \(\dbinom{b}{d}^a\) 种不同的方案数。依据乘法原理,二者相乘即为所求。
另外,记得预处理阶乘和逆元。
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define sort stable_sort
#define endl '\n'
ll jc[1000001],inv[1000001],jc_inv[1000001];
ll C(ll n,ll m,ll p)
{
if(n>=m&&n>=0&&m>=0)
{
return (jc[n]*jc_inv[m]%p)*jc_inv[n-m]%p;
}
else
{
return 0;
}
}
ll qpow(ll a,ll b,ll p)
{
ll ans=1;
while(b>0)
{
if(b&1)
{
ans=ans*a%p;
}
b>>=1;
a=a*a%p;
}
return ans;
}
int main()
{
ll n,a,b,d,i,p=1000000007;
inv[1]=1;
jc[0]=jc_inv[0]=jc[1]=jc_inv[1]=1;
for(i=2;i<=1000000;i++)
{
inv[i]=(p-p/i)*inv[p%i]%p;
jc[i]=jc[i-1]*i%p;
jc_inv[i]=jc_inv[i-1]*inv[i]%p;
}
while(cin>>n>>a>>b>>d)
{
cout<<C(n,a,p)*qpow(C(b,d,p),a,p)%p<<endl;
}
return 0;
}
本文来自博客园,作者:hzoi_Shadow,原文链接:https://www.cnblogs.com/The-Shadow-Dragon/p/17841534.html,未经允许严禁转载。
版权声明:本作品采用 「署名-非商业性使用-相同方式共享 4.0 国际」许可协议(CC BY-NC-SA 4.0) 进行许可。