2019牛客暑期多校训练营(第一场)ABBA

题意:(n+m)个A,(n+m)个B组成一个字符串,将其剖开,使其有n个AB和m个BA的方案数

思路1:DP,dp[i][j]表示以i个A开头,j个B开头的方案数。

       如果当前这位是A,则其要满足,i-j<=n,AB的个数不能超过(n+1)

           B的情况同理。

 

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=b;i>=a;i--)
using namespace std;
#define ll long long
const int N=3e5+5;
const int mod = 1e9+7;
int n,m,f[3010][3010];
ll rd()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int sum(int a, int b) {
    int s = (a + b);
    if (s >= mod) s -= mod;
    return s;
}
void init()
{

    rep(i,0,n+m)
        rep(j,0,n+m) f[i][j]=0;
    f[0][0]=1;
    rep(i,0,n+m)
        rep(j,0,n+m)
        {
            if(i-j<=n&&i!=0) f[i][j]=sum(f[i][j],f[i-1][j]);
            if(j-i<=m&&j!=0) f[i][j]=sum(f[i][j],f[i][j-1]);
            //printf("i=%d j=%d %d\n",i,j,f[i][j]);
        }
    printf("%d\n",f[n+m][n+m]);
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        init();    
    } 
} 
View Code

 

思路2:组合数

    ans=C(2*(n+m),n+m)- C(2*(n+m),n-1)-C(2*(n+m),m-1)

    C(2*(n+m),n-1)的含义是

            我们有(n+m+m+1)个A,和(n-1)个B,排列一下的方案数。

    选取A和B的差数为(2*m+2)的前缀,AB互换,就是不合法答案。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=b;i>=a;i--)
using namespace std;
#define ll long long
const int N=3e5+5;
const int mod = 1e9+7;
int n,m;
ll fac[10100],inv[10100];
int sum(int a, int b) {
    int s = (a + b);
    if (s >= mod) s -= mod;
    return s;
}
int sub(int a, int b) {
    int s = a - b;
    if (s < 0) s += mod;
    return s;
}
int mult(int a, int b) {
    return (1LL * a * b) % mod;
}
ll rd()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
ll qpow(ll a,ll b,ll p)
{
    ll ret=1;a%=p;
    while(b)
    {
        if(b&1) ret=ret*a%p;
        b/=2;a=a*a%p;
    }
    return ret;
}
ll C(ll n,ll m)
{
    if(m>n) return 0;
    return 1ll * fac[n] * inv[m] % mod * inv[n - m] % mod;
}
int main()
{
    fac[0]=1;inv[0]=1;
    for(int i=1;i<=10000;i++) 
    {
        fac[i]=1ll*fac[i-1]*i%mod;
        inv[i]=qpow(fac[i],mod-2,mod);    
    }
    while(~scanf("%d%d",&n,&m))
    {
        printf("%d\n",sub(sub(C(2*(n+m),n+m),C(2*(n+m),n-1)),C(2*(n+m),m-1)));
    }
} 
View Code

 

 

   

posted @ 2019-08-15 00:30  The-Pines-of-Star  阅读(175)  评论(0编辑  收藏  举报