高级形态学处理

形态学处理,除了最基本的膨胀、腐蚀、开/闭运算、黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等。

一 凸包

凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内。

函数为:

           skimage.morphology.convex_hull_image(image)

输入为二值图像,输出一个逻辑二值图像。在凸包内的点为True, 否则为False

import matplotlib.pyplot as plt
from skimage import data,color,morphology

#生成二值测试图像
img=color.rgb2gray(data.horse())
img=(img<0.5)*1

chull = morphology.convex_hull_image(img)

#绘制轮廓
fig, axes = plt.subplots(1,2,figsize=(8,8))
ax0, ax1= axes.ravel()
ax0.imshow(img,plt.cm.gray)
ax0.set_title('original image')

ax1.imshow(chull,plt.cm.gray)
ax1.set_title('convex_hull image')

结果如下图所示:

convex_hull_image()是将图片中的所有目标看作一个整体,因此计算出来只有一个最小凸多边形。如果图中有多个目标物体,每一个物体需要计算一个最小凸多边形,则需要使用convex_hull_object()函数。

函数格式:skimage.morphology.convex_hull_object(imageneighbors=8)

输入参数image是一个二值图像,neighbors表示是采用4连通还是8连通,默认为8连通。

例:

import matplotlib.pyplot as plt
from skimage import data,color,morphology,feature

#生成二值测试图像
img=color.rgb2gray(data.coins())

#检测canny边缘,得到二值图片
edgs=feature.canny(img, sigma=3, low_threshold=10, high_threshold=50) 

chull = morphology.convex_hull_object(edgs)

#绘制轮廓
fig, axes = plt.subplots(1,2,figsize=(8,8))
ax0, ax1= axes.ravel()
ax0.imshow(edgs,plt.cm.gray)
ax0.set_title('many objects')
ax1.imshow(chull,plt.cm.gray)
ax1.set_title('convex_hull image')
plt.show()

结果如下图所示:

二 连通区域标记

在二值图像中,如果两个像素点相邻且值相同(同为0或同为1),那么就认为这两个像素点在一个相互连通的区域内。而同一个连通区域的所有像素点,都用同一个数值来进行标记,这个过程就叫连通区域标记。在判断两个像素是否相邻时,我们通常采用4连通或8连通判断。在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有2种:4邻接与8邻接。4邻接一共4个点,即上下左右,如下左图所示。8邻接的点一共有8个,包括了对角线位置的点,如下右图所示。

在skimage包中,我们采用measure子模块下的label()函数来实现连通区域标记。

函数格式:

       skimage.measure.label(image,connectivity=None)

  • 输入参数image表示需要处理的二值图像,connectivity表示连接的模式,1代表4邻接,2代表8邻接。
  • 输出一个标记数组(labels), 从0开始标记。
import numpy as np
import scipy.ndimage as ndi
from skimage import measure,color
import matplotlib.pyplot as plt

#编写一个函数来生成原始二值图像
def microstructure(l=256):
    n = 5
    x, y = np.ogrid[0:l, 0:l]  #生成网络
    mask = np.zeros((l, l))
    generator = np.random.RandomState(1)  #随机数种子
    points = l * generator.rand(2, n**2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) #高斯滤波
    return mask > mask.mean()

data = microstructure(l=128)*1 #生成测试图片

labels=measure.label(data,connectivity=2)  #8连通区域标记
dst=color.label2rgb(labels)  #根据不同的标记显示不同的颜色
print('regions number:',labels.max()+1)  #显示连通区域块数(从0开始标记)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, plt.cm.gray, interpolation='nearest')
ax1.axis('off')
ax2.imshow(dst,interpolation='nearest')
ax2.axis('off')

fig.tight_layout()
plt.show()

在代码中,有些地方乘以1,则可以将bool数组快速地转换为int数组。结果如下所示:

regions number: 9

 

如果想分别对每一个连通区域进行操作,比如计算面积、外接矩形、凸包面积等,则需要调用measure子模块的regionprops()函数。该函数格式为:

              skimage.measure.regionprops(label_image)

返回所有连通区块的属性列表,常用的属性列表如下表:

属性名称 类型 描述
area int 区域内像素点总数
bbox tuple 边界外接框(min_row, min_col, max_row, max_col)
centroid array   质心坐标
convex_area int 凸包内像素点总数
convex_image ndarray 和边界外接框同大小的凸包  
coords ndarray 区域内像素点坐标
Eccentricity  float 离心率
equivalent_diameter  float 和区域面积相同的圆的直径
euler_number int   区域欧拉数
extent  float 区域面积和边界外接框面积的比率
filled_area int 区域和外接框之间填充的像素点总数
perimeter  float 区域周长
label int 区域标记

三 删除小块区域

有些时候,我们只需要一些大块区域,那些零散的、小块的区域,我们就需要删除掉,则可以使用morphology子模块的remove_small_objects()函数。

函数格式:skimage.morphology.remove_small_objects(armin_size=64connectivity=1in_place=False)

参数:

  • ar: 待操作的bool型数组。
  • min_size: 最小连通区域尺寸,小于该尺寸的都将被删除。默认为64.
  • connectivity: 邻接模式,1表示4邻接,2表示8邻接
  • in_place: bool型值,如果为True,表示直接在输入图像中删除小块区域,否则进行复制后再删除。默认为False.
  • 返回删除了小块区域的二值图像。
import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt

#编写一个函数来生成原始二值图像
def microstructure(l=256):
    n = 5
    x, y = np.ogrid[0:l, 0:l]  #生成网络
    mask = np.zeros((l, l))
    generator = np.random.RandomState(1)  #随机数种子
    points = l * generator.rand(2, n**2)
    mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) #高斯滤波
    return mask > mask.mean()

data = microstructure(l=128) #生成测试图片

dst=morphology.remove_small_objects(data,min_size=300,connectivity=1)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, plt.cm.gray, interpolation='nearest')
ax2.imshow(dst,plt.cm.gray,interpolation='nearest')

fig.tight_layout()
plt.show()

结果如下图所示:

四 综合示例:阈值分割+闭运算+连通区域标记+删除小区块+分色显示

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from skimage import data,filters,segmentation,measure,morphology,color

#加载并裁剪硬币图片
image = data.coins()[50:-50, 50:-50]

thresh =filters.threshold_otsu(image) #阈值分割
bw =morphology.closing(image > thresh, morphology.square(3)) #闭运算

cleared = bw.copy()  #复制
segmentation.clear_border(cleared)  #清除与边界相连的目标物

label_image =measure.label(cleared)  #连通区域标记
borders = np.logical_xor(bw, cleared) #异或
label_image[borders] = -1
image_label_overlay =color.label2rgb(label_image, image=image) #不同标记用不同颜色显示

fig,(ax0,ax1)= plt.subplots(1,2, figsize=(8, 6))
ax0.imshow(cleared,plt.cm.gray)
ax1.imshow(image_label_overlay)

for region in measure.regionprops(label_image): #循环得到每一个连通区域属性集
    
    #忽略小区域
    if region.area < 100:
        continue

    #绘制外包矩形
    minr, minc, maxr, maxc = region.bbox
    rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,
                              fill=False, edgecolor='red', linewidth=2)
    ax1.add_patch(rect)
fig.tight_layout()
plt.show()

结果如下图所示:

 

posted @ 2018-11-19 19:50  珠峰上吹泡泡  阅读(505)  评论(0编辑  收藏  举报