无约束梯度算法
梯度方向
梯度方向的定义
为什么选梯度方向
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504125519759-953385073.jpg"width="440"height="200" align=center/>
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504125530059-1378762556.jpg"width="440"height="200" align=center/>
沿梯度方向存在的问题
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504125618818-1412551098.jpg"width="440"height="200" align=center/>
注:其实就是“沿梯度方向,函数不能再有限步达到最优!”
梯度算法
梯度算法的定义
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504125832328-1000740396.jpg"width="440"height="200" align=center/>
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504125842894-1609553471.jpg"width="440"height="200" align=center/>
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504125851445-1058170853.jpg"width=440"height="200" align=center/>
梯度算法例题
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504130102073-2002014241.png"width="440"height="200" align=center/>
最优梯度
最优梯度的定义
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504130148066-1765828659.jpg"width="440"height="200" align=center/>
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504130157956-1869652286.jpg"width="440"height="200" align=center/>
最优梯度的例题
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504130315585-543518543.png"width="440"height="200" align=center/>
最优梯度的收敛特性
<img src="https://img2018.cnblogs.com/blog/1414369/201905/1414369-20190504130349193-1506040087.jpg"width="440"height="200" align=center/>