模拟(堆):USACO Jan11 瓶颈

题目描述

Farmer John is gathering the cows. His farm contains a network of N (1 <= N <= 100,000) fields conveniently numbered 1..N and connected by N-1 unidirectional paths that eventually lead to field 1. The fields and paths form a tree.

Each field i > 1 has a single one-way, exiting path to field P_i, and currently contains C_i cows (1 <= C_i <= 1,000,000,000). In each time unit, no more than M_i (0 <= M_i <= 1,000,000,000) cows can travel from field i to field P_i (1 <= P_i <= N) (i.e., only M_i cows can traverse the path).

Farmer John wants all the cows to congregate in field 1 (which has no limit on the number of cows it may have). Rules are as follows:

  • Time is considered in discrete units.

  • Any given cow might traverse multiple paths in the same time unit. However, no more than M_i total cows can leave field i (i.e., traverse its exit path) in the same time unit.

  • Cows never move *away* from field #1.

In other words, every time step, each cow has the choice either to

a) stay in its current field

b) move through one or more fields toward field #1, as long as the bottleneck constraints for each path are not violated

Farmer John wants to know how many cows can arrive in field 1 by certain times. In particular, he has a list of K (1 <= K <= 10,000) times T_i (1 <= T_i <= 1,000,000,000), and he wants to know, for each T_i in the list, the maximum number of cows that can arrive at field 1 by T_i if scheduled to optimize this quantity.

Consider an example where the tree is a straight line, and the T_i list contains only T_1=5, and cows are distibuted as shown:

Locn:      1---2---3---4      <-- Pasture ID numbers 
C_i:       0   1   12  12     <-- Current number of cows 
M_i:           5   8   3      <-- Limits on path traversal; field 1 has no limit since it has no exit 
The solution is as follows; the goal is to move cows to field 1: 

Tree: 1---2---3---4

t=0        0   1   12  12     <-- Initial state 
t=1        5   4   7   9      <-- field 1 has cows from field 2 and 3 t=2        10  7   2   6 
t=3        15  7   0   3 
t=4        20  5   0   0 
t=5        25  0   0   0 
Thus, the answer is 25: all 25 cows can arrive at field 1 by time t=5. 
Farmer John有一张N个农场构成的网络(1 <= N <= 100,000) ,我们将农场标记为1N。 农场被N-1条单向道路连接,保证从任何一个农场可以到达1号农场。FJ想让奶牛到1号农场集中 (P.S. 至于要做什么我也不知道)。 对于每个农场i > 1都有一条单独的单向道路通往P_i,并且这个农场里有C_i只奶牛 (1 <= C_i <= 1,000,000,000)。

在每个单位时间里,这条道路允许不超过M_i (0 <= M_i <= 1,000,000,000)只奶牛从农场i走到农场P_i (1 <= P_i <= N)。 Farmer John 想让所有的奶牛都集中在1号农场(农场容纳奶牛的数量是没有限制的)。 下面是奶牛集中到1号农场过程的规则:

  • 我们认为时间是离散的 * 任何奶牛都可以在一个单位时间里走过任意多条道路。但是,必须满足每条道路的上限M_i。

  • 奶牛从来不会离开1号农场。 换句话说,每一个单位时间,每只奶牛可以选择下面行动之一:

a) 留在当前的农场

b) 经过一条或者多条道路,向1号农场移动。

同样,需要满足每条道路的上限M_i。

FJ想知道有多少奶牛可以在某个特定的时刻到达1号农场。

特别的,他有一张列着K (1 <= K <= 10,000) 个时间T_i (1 <= T_i <= 1,000,000,000)的单子,他想知道对于每个T_i,如果采用最优 的策略在这个时刻结束时最多能有多少奶牛到达1号农场。

输入输出格式

输入格式:
  • Line 1: Two space-separated integers: N and K

  • Lines 2..N: Line i (not i+1) describes field i with three

space-separated integers: P_i, C_i, and M_i

  • Lines N+1..N+K: Line N+i contains a single integer: T_i
输出格式:
  • Lines 1..K: Line i contains a single integer that is the maximum number of cows that can arrive at field 1 by time T_i.

输入输出样例

输入样例#1:
4 1 
1 1 5 
2 12 7 
3 12 3 
5 
输出样例#1:
25 
 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdio>
 5 #include <queue>
 6 typedef long long LL;
 7 using namespace std;
 8 const int N=100010;
 9 struct Query{LL t,res;int id;}ask[N];
10 bool cmp1(Query x,Query y){return x.t<y.t;}
11 bool cmp2(Query x,Query y){return x.id<y.id;}
12 struct Node{
13   LL t;int x;Node(LL t_=0,int x_=0){t=t_;x=x_;}
14   friend bool operator<(Node a,Node b){return a.t>b.t;}
15 };
16 priority_queue<Node>q;
17 int fa[N],anc[N],lim[N];
18 LL cow[N],pass[N];
19 int Find(int x){
20   if(anc[x]==x)return x;
21   return anc[x]=Find(anc[x]);
22 }
23 int n,Q;
24 int main(){
25   freopen("bottleneck.in","r",stdin);
26   freopen("bottleneck.out","w",stdout);
27   scanf("%d%d",&n,&Q);
28   for(int i=1;i<=n;i++)
29     anc[i]=i;
30   for(int i=2;i<=n;i++){
31     scanf("%d",&fa[i]);
32     scanf("%lld",&cow[i]);
33     scanf("%lld",&lim[i]);
34     pass[fa[i]]-=lim[i];
35     pass[i]+=lim[i];
36   }
37   for(int i=1;i<=Q;i++){
38     scanf("%lld",&ask[i].t);
39     ask[i].id=i;
40   }sort(ask+1,ask+Q+1,cmp1);
41 
42   for(int i=2;i<=n;i++)
43     if(pass[i]>0){
44       LL t=cow[i]/pass[i];
45       q.push(Node(t,i));
46     }
47 
48   int p=1,x,tp;
49   while(!q.empty()&&p<=Q){
50     while(p<=Q&&ask[p].t<=q.top().t)
51       ask[p].res=cow[1]-pass[1]*ask[p].t,p++;
52     if(anc[q.top().x]!=q.top().x){q.pop();continue;}
53     x=q.top().x;tp=Find(fa[x]);cow[tp]+=cow[x];
54     pass[tp]+=pass[x];anc[x]=tp;
55     if(pass[tp]>0){
56       LL t=cow[tp]/pass[tp];
57       q.push(Node(t,tp));
58     }
59     q.pop();
60   }sort(ask+1,ask+Q+1,cmp2);
61   for(int i=1;i<=Q;i++)
62     printf("%lld\n",ask[i].res);
63   return 0;
64 }

 

posted @ 2016-11-17 10:49  TenderRun  阅读(598)  评论(0编辑  收藏  举报