.NET Core TPL 数据流 BatchBlock管道封装

 

场景:例如需要处理数据库大量的数据,先查询出来,然后操作数据,然后1000条合成1批次,然后再插入到另外一张表。

作用:数据流批处理,多核操作增加效率,批处理改变单个插入为批量插入增加效率

定义数据Model 

 1     public class Employee
 2     {
 3         public int EmployeeID { get; set; }
 4         public string LastName { get; set; }
 5         public string FirstName { get; set; }
 6 
 7         // A random number generator that helps tp generate
 8         // Employee property values.
 9         static Random rand = new Random(42);
10 
11         // Possible random first names.
12         static readonly string[] firstNames = { "Tom", "Mike", "Ruth", "Bob", "John" };
13         // Possible random last names.
14         static readonly string[] lastNames = { "Jones", "Smith", "Johnson", "Walker" };
15 
16         // Creates an Employee object that contains random
17         // property values.
18         public static Employee Random()
19         {
20             return new Employee
21             {
22                 EmployeeID = -1,
23                 LastName = lastNames[rand.Next() % lastNames.Length],
24                 FirstName = firstNames[rand.Next() % firstNames.Length]
25             };
26         }
27     }
View Code

定义数据库操作(这里简化)

 1     public class EmployeeRepository
 2     {
 3         /// <summary>
 4         /// 执行次数
 5         /// </summary>
 6         private static int Count;
 7         public static void InsertEmployees(Employee[] employees)
 8         {
 9             Console.WriteLine($"线程Id:{Thread.CurrentThread.ManagedThreadId} 第{Interlocked.Increment(ref Count)}次  总数:{ employees.Count()},数据:{JsonConvert.SerializeObject(employees.Select(p=>p.EmployeeID))}开始执行批量插入");
10             //todo: db op
11             return;
12         }
13     }
View Code

数据流批处理封装类

 1     public class BatchBlockPipeline<T>
 2     {
 3         /// <summary>
 4         /// 批处理块
 5         /// </summary>
 6         private BatchBlock<T> _batchBlock;
 7         /// <summary>
 8         /// 批处理执行块
 9         /// </summary>
10         private ActionBlock<T[]> _actionBlock;
11         /// <summary>
12         /// 是否为定时触发
13         /// </summary>
14         private bool _timeTrigger;
15         /// <summary>
16         /// 定时触发时候用到的连接块
17         /// </summary>
18         private TransformBlock<T, T> _transformBlock;
19         /// <summary>
20         /// 定时触发器
21         /// </summary>
22         private readonly Timer _timer;
23 
24         /// <summary>
25         /// 基本构造函数
26         /// </summary>
27         /// <param name="batchSize">每次处理的数据量</param>
28         /// <param name="action">执行委托方法</param>
29         /// <param name="boundedCapacity">最大处理的数据量 默认 int.MaxValue 2147483647</param>
30         /// <param name="maxDegreeOfParallelism">最大并行量 默认1</param>
31         /// <param name="timeTrigger">定时触发批处理 默认不处理, 设置大于0则处理,秒级别</param>
32         public BatchBlockPipeline(int batchSize, Action<T[]> action, int boundedCapacity = int.MaxValue, int maxDegreeOfParallelism = 1, int timeTrigger = 0)
33         {
34             _batchBlock = new BatchBlock<T>(batchSize, new GroupingDataflowBlockOptions() { BoundedCapacity = boundedCapacity });
35             _actionBlock = new ActionBlock<T[]>(data => action(data), new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism });
36             _batchBlock.LinkTo(_actionBlock, new DataflowLinkOptions() { PropagateCompletion = true });
37             _batchBlock.Completion.ContinueWith(delegate { _actionBlock.Complete(); });
38             if (timeTrigger > 0)
39             {
40                 _timeTrigger = true;
41                 _transformBlock = new TransformBlock<T, T>(model =>
42                 {
43                     _timer.Change(TimeSpan.FromSeconds(timeTrigger), Timeout.InfiniteTimeSpan);
44                     return model;
45                 }, new ExecutionDataflowBlockOptions() { BoundedCapacity = boundedCapacity });
46                 _transformBlock.LinkTo(_batchBlock, new DataflowLinkOptions() { PropagateCompletion = true });
47             }
48         }
49 
50         /// <summary>
51         /// post 数据
52         /// </summary>
53         /// <param name="model"></param>
54         /// <returns></returns>
55         public bool PostValue(T model)
56         {
57             if (!_timeTrigger)
58             {
59                 return _batchBlock.Post(model);
60             }
61             return _transformBlock.Post(model);
62         }
63 
64         /// <summary>
65         /// 主动触发数据处理,例如:当数据剩余未达到batchsize 主动触发处理数据
66         /// </summary>
67         /// <param name="model"></param>
68         /// <returns></returns>
69         public void TriggerBatch()
70         {
71             _batchBlock.TriggerBatch();
72         }
73 
74         /// <summary>
75         /// 返回当前执行总数
76         /// </summary>
77         /// <returns></returns>
78         public int GetBatchSum()
79         {
80             return _batchBlock.Receive().Count();
81         }
82 
83         /// <summary>
84         /// 主动关闭
85         /// </summary>
86         /// <returns></returns>
87         public void Close()
88         {
89             if (!_timeTrigger)
90             {
91                 _batchBlock.Complete();
92             }
93             _transformBlock.Complete();
94         }
95     }
View Code

测试方法

 1     class Program
 2     {
 3         static void Main(string[] args)
 4         {
 5 
 6             var batchDataPipeline = new BatchBlockPipeline<Employee>(10, EmployeeRepository.InsertEmployees);
 7 
 8             for (int i = 0; i < 100; i++)
 9             {
10                 batchDataPipeline.PostValue(Employee.Random(i));
11             }
12 
13             Console.ReadKey();
14         }
15     }
View Code

1.测试:100条数据,10个一批次插入数据库,并行数量1

//var batchDataPipeline = new BatchBlockPipeline<Employee>(10, EmployeeRepository.InsertEmployees);

 

2.测试:100条数据,10个一批次插入数据库,并行数量1,最大限制处理20个

// var batchDataPipeline = new BatchBlockPipeline<Employee>(10, EmployeeRepository.InsertEmployees,20);

 

 3.测试 100条数据,10个一批次插入数据库,多核多线程并行数量10

//var batchDataPipeline = new BatchBlockPipeline<Employee>(10, EmployeeRepository.InsertEmployees, maxDegreeOfParallelism: 10);

 

 4.测试 100条数据,10个一批次插入数据库,定时触发3秒触发一次 (模拟不定期post数据,或者最后剩余的数据达不到batchsize的情况)

//var batchDataPipeline = new BatchBlockPipeline<Employee>(10, EmployeeRepository.InsertEmployees, timeTrigger: 3);

//for (int i = 0; i < 100; i++)
//{
// batchDataPipeline.PostValue(Employee.Random(i));
// if (i % 3 == 0|| i % 7 == 0 || i % 9 == 0)
// {
// Thread.Sleep(5000);
// }
//}

 

 

官方TPL数据流之BatchBlock例子链接     DemoGitHub地址

 

posted @ 2020-07-02 17:08  TeemoHQ  阅读(854)  评论(0编辑  收藏  举报