Python常用的排序

排序

冒泡排序

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

  • 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
    持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-\\


def bubble_sort(alist):
    """Sort the elements with Bubble method

    :aList: one list
    :returns: List with sorted values

    """
    for i in range(len(alist)-1, 0, -1):
        for j in range(i):
            if alist[j] > alist[j+1]:
                temp = alist[j+1]
                alist[j+1] = alist[j]
                alist[j] = temp


if __name__ == "__main__":
    one_list = [54, 26, 93, 17, 77, 31, 44, 55]
    bubble_sort(one_list)
    print(one_list)

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-


def selection_sort(alist):
    """TODO: Docstring for selection_sort.
    :returns: TODO

    """
    n = len(alist)

    for i in range(n-1):
        # record the index of the min value
        min_index = i

        # pick the min value from the i+1 to max index
        for j in range(i+1, n):
            if alist[j] < alist[min_index]:
                min_index = j

        # if data is not in the true index, exchange them
        if min_index != i:
            alist[i], alist[min_index] = alist[min_index], alist[i]
            # temp = alist[min_index]
            # alist[min_index] = alist[i]
            # alist[i] = temp


if __name__ == "__main__":
    test_list = [2, 7, 12, 0, 8, 22, 1]
    selection_sort(test_list)
    print(test_list)

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  • 从数列中挑出一个元素,称为"基准"(pivot),
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
def quick_sort(alist, start, end):
    """快速排序"""

    # 递归的退出条件
    if start >= end:
        return

    # 设定起始元素为要寻找位置的基准元素
    mid = alist[start]

    # low为序列左边的由左向右移动的游标
    low = start

    # high为序列右边的由右向左移动的游标
    high = end

    while low < high:
        # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
        while low < high and alist[high] >= mid:
            high -= 1
        # 将high指向的元素放到low的位置上
        alist[low] = alist[high]

        # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
        while low < high and alist[low] < mid:
            low += 1
        # 将low指向的元素放到high的位置上
        alist[high] = alist[low]

    # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
    # 将基准元素放到该位置
    alist[low] = mid

    # 对基准元素左边的子序列进行快速排序
    quick_sort(alist, start, low-1)

    # 对基准元素右边的子序列进行快速排序
    quick_sort(alist, low+1, end)


alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)

查找

无序表查找

数据不排序的线性查找,遍历数据元素。
算法分析:最好情况是在第一个位置就找到了,此为O(1);最坏情况在最后一个位置才找到,此为O(n);所以平均查找次数为(n+1)/2。最终时间复杂度为O(n)

#!/usr/bin/env python
# -*- coding: utf-8 -*-


def sequential_search(lis, key):
    """search one key in one sequential with unordered.
    :lis: one list
    :key: the search value
    :returns: index

    """
    length = len(lis)
    for i in range(length):
        if lis[i] == key:
            return i
    else:
        return False


if __name__ == "__main__":
    origin_list = [1, 5, 8, 123, 22, 54, 7, 99, 300, 222]
    result = sequential_search(origin_list, 44)
    print(result)

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。

  • 首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;
  • 否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
  • 重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
# 非递归实现

def binary_search(alist, item):
      first = 0
      last = len(alist)-1
      while first<=last:
          midpoint = int((first + last)/2)
          if alist[midpoint] == item:
              return True
          elif item < alist[midpoint]:
              last = midpoint-1
          else:
              first = midpoint+1
    return False

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

## 递归实现
def binary_search(alist, item):
    if len(alist) == 0:
        return False
    else:
        midpoint = len(alist)//2
        if alist[midpoint]==item:
          return True
        else:
          if item<alist[midpoint]:
            return binary_search(alist[:midpoint],item)
          else:
            return binary_search(alist[midpoint+1:],item)

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))
posted @ 2017-05-31 11:50  GeneJiang  阅读(158)  评论(0编辑  收藏  举报