POJ 2387 Til the Cows Come Home

题目:click here

题意:给定一个无向图,有T条边,N个顶点,问从1到n的最短路。

下面给出3种dijkstra算法分别用邻接矩阵,邻接表,和堆优化后的代码。

邻接表堆优化:O(ElogV)

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring> 
 4 #include <vector> 
 5 #include <queue>
 6 #define F first
 7 #define S second
 8 #define pb push_back
 9 using namespace std;
10 typedef pair<int,int> P;    // F是最短距离,S是顶点编号
11 const int INF = 1e9+7;
12 const int M = 5e3+3;
13 
14 struct edge { 
15     int to, cost;
16 };
17 int t, n;
18 vector<edge> G[M];  // 邻接表记录无向图
19 int dist[M];    // dist[i]表示从1到i的最短距离
20 
21 void dijkstra( int s )    {     // digkstra算法 复杂度O(|E|log|v|)
22     priority_queue<P, vector<P>, greater<P> > que;  // 按照F从小到大的顺序取出值
23     fill( dist, dist+n+1, INF );
24     dist[s] = 0;
25     que.push( P(0,s) );
26     while( !que.empty() )   {
27         P p = que.top(); que.pop();
28         int v = p.S;
29         if( dist[v] < p.first ) continue;
30         for( int i=0; i<G[v].size(); i++ )  {
31             edge e = G[v][i];
32             if( dist[e.to] > dist[v]+e.cost )   {
33                 dist[e.to] = dist[v] + e.cost;
34                 que.push( P(dist[e.to], e.to) );
35             }
36         }
37     }
38 }
39 
40 void solve()    {
41     for( int i=0; i<t; i++ )    {
42         int f, t, c;
43         scanf("%d%d%d", &f, &t, &c );
44         G[f].pb( (edge){t,c} ); 
45         G[t].pb( (edge){f,c} );
46     }
47     dijkstra( n );
48     printf("%d\n", dist[1] );
49 }
50 
51 int main()  {
52     while( ~scanf("%d%d", &t, &n ) )    {
53         solve();
54     } 
55     return 0;
56 }

 

邻接矩阵1:O(V2)

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring> 
 4 #include <algorithm>
 5 using namespace std;
 6 const int INF = 0x3f3f3f3f;
 7 const int M = 5e3+3;
 8 
 9 int cost[M][M];
10 int t, n;
11 int d[M];
12 bool vis[M];
13 
14 void bijkstra( int s ) {
15     fill( d, d+n+1, INF );
16     fill( vis, vis+n+1, false );
17     d[s] = 0;
18     while( true )   {
19         int v = -1;
20         for( int u=1; u<=n; u++ ) 
21             if( !vis[u] && (v==-1 || d[u]<d[v] ) ) v = u;
22         if( v == -1 ) break;
23         vis[v] = true;
24         for( int u=1; u<=n; u++ )
25             if( cost[v][u] != INF )
26             d[u] = min( d[u], d[v]+cost[v][u] );
27     }
28 }
29 
30 void solve()    {
31     for( int i=1; i<=n; i++ )   {
32         for( int j=1;j<=n; j++ )
33             cost[i][j] = INF;
34         cost[i][i] = 0;
35     }
36     for( int i=0; i<t; i++ )    {
37         int f, t, c;
38         scanf("%d%d%d", &f, &t, &c );
39         if( cost[f][t] > c )    {
40             cost[f][t] = cost[t][f] = c;
41         }
42     }
43     bijkstra( 1 );
44     printf("%d\n", d[n] );
45 }
46 
47 int main()  {
48     while( ~scanf("%d%d", &t, &n ) )    {
49         solve();
50     } 
51     return 0;
52 }
View Code

 

邻接矩阵2:O(V2)

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring> 
 4 #include <algorithm>
 5 using namespace std;
 6 const int INF = 0x3f3f3f3f;
 7 const int M = 1e3+3;
 8  
 9 int cost[M][M];
10 int t, n;
11 bool vis[M];
12 
13 void bijkstra( int s )  {
14     memset( vis, false, sizeof(vis) );
15     vis[1] = true;
16     int tm = s-1;
17     while( tm-- )   {
18         int k = 1, minn = INF;
19         for( int j=1; j<=n; j++ )   {
20             if( !vis[j] && minn > cost[1][j] )  {
21                 minn = cost[1][j];
22                 k = j;
23             }
24         }
25         vis[k] = true;
26         for( int j=1; j<=n; j++ )   {
27             if( !vis[j] && cost[1][j] > cost[1][k]+cost[k][j] )
28                 cost[1][j] = cost[1][k] + cost[k][j];
29         }
30     }
31 }
32 void solve()    {
33     for( int i=1; i<=n; i++ )   {
34         for( int j=1;j<=n; j++ )
35             cost[i][j] = INF;
36         cost[i][i] = 0;
37     }
38     for( int i=0; i<t; i++ )    {
39         int f, t, c;
40         scanf("%d%d%d", &f, &t, &c );
41         if( cost[f][t] > c )    {
42             cost[f][t] = cost[t][f] = c;
43         }
44     }
45     bijkstra( n );
46     printf("%d\n", cost[1][n] );
47 }
48 
49 int main()  {
50     while( ~scanf("%d%d", &t, &n ) )    {
51         solve();
52     } 
53     return 0;
54 }
View Code

 

posted @ 2015-08-18 19:47  TaoTaoCome  阅读(142)  评论(0编辑  收藏  举报