whu-contest-2019(online)
比赛网址:http://whu2019.contest.codeforces.com/group/YyBKO8xFiH/contest/102167
赛后总结:
T:今天参加了武汉大学校赛网络赛,在cf上做的。界面还是挺熟悉的。开始三个人分头看题,我从最后往前面看,最后一题是kuangbin的主席树模板题,觉得打板子时间有点长,先看有没有别的简单题。然后就看到了E,E题就是一道简单模拟题。map存一下,模拟即可,然后就A了。然后是金姐看了B题,开始打了,也A了。这次我们第一题A花了16分钟,第二题是在第一题后6分钟A的,时间有在进步吧。别的题因为一下子想不出来,我就开始搞F题了。然后板子上的是求第m小的,所以改了很久(丢人。。。),金姐后来帮我一起改,金姐发挥了她的智慧,我们终于搞样例出来了。。呜呜。然后TLE了,因为链式前向星head赋值的问题,for改了就过了。做出来的时候已经只剩下一个小时了,我们开始研究D题。金姐和彭彭和我说觉得是规律算式题,我们整了很久,都没整出来。有点像组合数学,但是没搞出来。今天就结束了。
最后比赛结束看到群里很多大佬在讲解题目。发现有很多未触及的知识盲区。想着自己如果主席树模板搞快点就可以和队友一起想更久了。dbq。
P:看的第一题是C题,后来才知道是线段树上二分。然后看了B题,谭总敲完E,金姐就去打B了,我跟谭总说了一遍B题题意。谭总跟我说了一下F题,我大概感觉确实是主席树(然而菜的我wqbh)。然后看了D题,因为发现榜上A的人相对较多,题目意思容易理解,跟金姐讲了一遍,一致觉得是规律题(确实算吧,但不知道卡特兰,规律完全找不出)所以我们想的还是有一点偏差,嗯。。杠D题杠到结束--。确实,知识盲区太大,自己太菜。
J:这次只打了一道签到题,太菜了。进了D题找规律的坑就爬不出来了,呜呜呜呜。下次要是一个小时还做不出来,就要放弃!知识盲区还是太多。。。。
最后本队做出来B、E、F,罚时比较少。没做出来的先不提供题解(官方已给出)。
题解:
B
简单模拟
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<set> #include<map> #include<string> #include<vector> #include<ctime> #include<stack> using namespace std; const int maxn = 1000; #define MAX_DISTANCE 0x3f3f3f3f #define mm(a,b) memset(a,b,sizeof(a)) #define ll long long #define SIGN(A) ((A > 0) ? 1 : -1) #define NO_DISTANCE 1000000 const int INF = 0x3f3f3f3f; #define LL long long int #define mod 1000000007 int gcd(int a, int b) { return a == 0 ? b : gcd(b % a, a); } ll x, y; int n; int main() { int t; ll a; scanf("%d", &t); for (int k = 1; k <= t; k++) { scanf("%d", &n); x = y = 0; for (int i = 0; i < n; ++i) { scanf("%lld", &a); if (i % 4 == 0) x += a; else if (i % 4 == 1) y += a; else if (i % 4 == 2) x -= a; else y -= a; } ll ans = x * x + y * y; printf("Case #%d:%lld\n", k, ans); } }
D
一个蒲公英从(0,0)出发,向(x+1,y)或(x,y+1)出发,要求x<y。给你N个询问,最后达到(n,m)的方法有多少种。
用费马小定理求逆元,然后直接套公式。
ans = C(n+m-1,m) - C(n+m-1,m-1)
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> using namespace std; const int maxn = 5e5+50; #define MAX_DISTANCE 0x3f3f3f3f #define mm(a,b) memset(a,b,sizeof(a)) #define ll long long #define SIGN(A) ((A > 0) ? 1 : -1) #define NO_DISTANCE 1000000 const int INF = 0x3f3f3f3f; #define LL long long int #define mod 1000000007 int gcd(int a, int b) { return a == 0 ? b : gcd(b % a, a); } int mi[maxn]; inline int quick(int a, int b) { int res = a, ans = 1; for (int i = 0; i < 31; i++) { if (1 << i & b) ans = (long long)ans * res % mod; res = (long long)res * res % mod; } return ans; } int C(int n, int m) { int tmp = (long long)mi[n - m] * mi[m] % mod; int ans = (long long)mi[n] * quick(tmp, mod - 2) % mod; return ans; } int main() { int n, m; mi[0] = 1; for (int i = 1; i <= 200000; i++) mi[i] = (long long)mi[i - 1] * i % mod; int t; scanf("%d", &t); while (t--) { scanf("%d%d", &m, &n); printf("%d\n", (C(n + m - 1, m) - C(n + m - 1, m - 1) + mod) % mod); } return 0; }
E
简单模拟
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<set> #include<map> #include<string> #include<vector> #include<ctime> #include<stack> using namespace std; const int maxn = 1000; #define MAX_DISTANCE 0x3f3f3f3f #define mm(a,b) memset(a,b,sizeof(a)) #define ll long long #define SIGN(A) ((A > 0) ? 1 : -1) #define NO_DISTANCE 1000000 const int INF = 0x3f3f3f3f; #define LL long long int #define mod 1000000007 int gcd(int a, int b) { return a == 0 ? b : gcd(b % a, a); } map<char, char>letter; void init() { letter['a'] = '2'; letter['b'] = '2'; letter['c'] = '2'; letter['d'] = '3'; letter['e'] = '3'; letter['f'] = '3'; letter['g'] = '4'; letter['h'] = '4'; letter['i'] = '4'; letter['j'] = '5'; letter['k'] = '5'; letter['l'] = '5'; letter['m'] = '6'; letter['n'] = '6'; letter['o'] = '6'; letter['p'] = '7'; letter['q'] = '7'; letter['r'] = '7'; letter['s'] = '7'; letter['t'] = '8'; letter['u'] = '8'; letter['v'] = '8'; letter['w'] = '9'; letter['x'] = '9'; letter['y'] = '9'; letter['z'] = '9'; } int main() { init(); int T; cin >> T; int ccase = 1; while (T--) { string num; cin >> num; int m; cin >> m; printf("Case #%d:\n", ccase); ccase++; while (m--) { string s; cin >> s; string ans=""; for (int i = 0; i < s.length(); i++) { ans += letter[s[i]]; } if (ans == num) cout << "Maybe.." << endl; else cout << "How could that be possible?" << endl; } } return 0; }
F
树上区间第k大。裸的板题 ,判断数据是否合法即计算路径上的点是否有k个即可。
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> using namespace std; const int maxn = 1000; #define MAX_DISTANCE 0x3f3f3f3f #define mm(a,b) memset(a,b,sizeof(a)) #define ll long long #define SIGN(A) ((A > 0) ? 1 : -1) #define NO_DISTANCE 1000000 const int INF = 0x3f3f3f3f; #define LL long long int #define mod 1000000007 int gcd(int a, int b) { return a == 0 ? b : gcd(b % a, a); } //主席树部分 *****************8 const int MAXN = 200010; const int M = MAXN * 40; int n, q, m, TOT; int a[MAXN], t[MAXN]; int T[M], lson[M], rson[M], c[M]; void Init_hhash() { for (int i = 1; i <= n; i++) t[i] = a[i]; sort(t + 1, t + 1 + n); m = unique(t + 1, t + n + 1) - t - 1; } int build(int l, int r) { int root = TOT++; c[root] = 0; if (l != r) { int mid = (l + r) >> 1; lson[root] = build(l, mid); rson[root] = build(mid + 1, r); } return root; } int hhash(int x) { return lower_bound(t + 1, t + 1 + m, x) - t; } int update(int root, int pos, int val) { int newroot = TOT++, tmp = newroot; c[newroot] = c[root] + val; int l = 1, r = m; while (l < r) { int mid = (l + r) >> 1; if (pos <= mid) { lson[newroot] = TOT++; rson[newroot] = rson[root]; newroot = lson[newroot]; root = lson[root]; r = mid; } else { rson[newroot] = TOT++; lson[newroot] = lson[root]; newroot = rson[newroot]; root = rson[root]; l = mid + 1; } c[newroot] = c[root] + val; } return tmp; } int query(int left_root, int right_root, int LCA, int k) { int lca_root = T[LCA]; int pos = hhash(a[LCA]); int l = 1, r = m; while (l < r) { int mid = (l + r) >> 1; int tmp = c[lson[left_root]] + c[lson[right_root]] - 2 * c[lson[lca_root]] + (pos >= l && pos <= mid); if (tmp >= k) { left_root = lson[left_root]; right_root = lson[right_root]; lca_root = lson[lca_root]; r = mid; } else { k -= tmp; left_root = rson[left_root]; right_root = rson[right_root]; lca_root = rson[lca_root]; l = mid + 1; } } return l; } //LCA部分 int rmq[2 * MAXN];//rmq数组,就是欧拉序列对应的深度序列 struct ST { int mm[2 * MAXN]; int dp[2 * MAXN][20];//最小值对应的下标 void init(int n) { mm[0] = -1; for (int i = 1; i <= n; i++) { mm[i] = ((i&(i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1]; dp[i][0] = i; } for (int j = 1; j <= mm[n]; j++) for (int i = 1; i + (1 << j) - 1 <= n; i++) dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1]; } int query(int a, int b)//查询[a,b]之间最小值的下标 { if (a > b)swap(a, b); int k = mm[b - a + 1]; return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k]; } }; //边的结构体定义 struct Edge { int to, next; }; Edge edge[MAXN * 2]; int tot, head[MAXN]; int F[MAXN * 2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始 int P[MAXN];//P[i]表示点i在F中第一次出现的位置 int cnt; ST st; void init() { tot = 0; for (int i = 0; i <= n; i++) head[i] = -1; } void addedge(int u, int v)//加边,无向边需要加两次 { edge[tot].to = v; edge[tot].next = head[u]; head[u] = tot++; } void dfs(int u, int pre, int dep) { F[++cnt] = u; rmq[cnt] = dep; P[u] = cnt; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (v == pre)continue; dfs(v, u, dep + 1); F[++cnt] = u; rmq[cnt] = dep; } } void LCA_init(int root, int node_num)//查询LCA前的初始化 { cnt = 0; dfs(root, root, 0); st.init(2 * node_num - 1); } int query_lca(int u, int v)//查询u,v的lca编号 { return F[st.query(P[u], P[v])]; } void dfs_build(int u, int pre) { int pos = hhash(a[u]); T[u] = update(T[pre], pos, 1); for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (v == pre)continue; dfs_build(v, u); } } int main() { int ccase; cin >> ccase; while (ccase--) { scanf("%d %d", &n, &q); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); Init_hhash(); init(); TOT = 0; int u, v; for (int i = 1; i < n; i++) { scanf("%d%d", &u, &v); addedge(u, v); addedge(v, u); } LCA_init(1, n); T[n + 1] = build(1, m); dfs_build(1, n + 1); int k; while (q--) { scanf("%d %d %d", &u, &v, &k); int K = rmq[P[u]] + rmq[P[v]] - 2 * rmq[P[query_lca(u, v)]] + 1; if (k > K) printf("-1\n"); else { K = K - k + 1; printf("%d\n", t[query(T[u], T[v], query_lca(u, v), K)]); } } } return 0; }