加载模型进行推理

打算使用训练好的模型提取MS1M的人脸图像的特征进行聚类,记录一下。

模型加载

  • 将Pytorch模型转换成ONNX模型的主要函数为torch.onnx.export()
  • 对pytorch模型(nn.Module)对象调用named_parameters()可以得到对应的参数名(key)和参数值(value)
  • 对pytorch模型对象调用load_state_dict()可以将预训练模型的参数加载到定义的模型中,注意strict参数
def load_ckpt(path, model, ignores=[], strict=True, optimizer=None, not_match=True):
    if os.path.exists(path):
        print("Loading checkpoint '{}'".format(path))
        ckpt = torch.load(path, map_location=torch.device("cpu"))
        
        # 去掉预训练模型中的module.base.前缀
        from collections import OrderedDict
        new_ckpt_state_dict = OrderedDict()
        if not_match:
            for k, v in ckpt["state_dict"].items():
                new_ckpt_state_dict[k[12:]] = v
        else:
            new_ckpt_state_dict = ckpt["state_dict"]
            
        if len(ignores) > 0:
            assert optimizer == None
            keys = set(new_ckpt_state_dict.keys())
            for ignore in ignores:
                if ignore in keys:
                    print("Ignoring {}".format(ignore))
                    del new_ckpt_state_dict[ignore]
                else:
                    raise ValueError("can not find {} in load_path".foramt(ignore))
        
      
        model.load_state_dict(new_ckpt_state_dict, strict=strict)
        
        if not strict:
            # 如果load_state_dict()中strict参数为False, 那么只会加载两者都有的keys
            pretrained_keys = set(new_ckpt_state_dict.keys())
            model_keys = set([k for k, _ in model.named_parameters()])
            for k in model_keys - pretrained_keys:
                print("Warning: {} not loaded\n".format(k))
                
        if optimizer != None:
            assert len(ignores) == 0
            optimizer.load_state_dict(ckpt["optimizer"])
            print("=> Loaded checkpoint '{}' (step {})".format(path, ckpt["epoch"]))
            return ckpt["epoch"], ckpt["best_prec1"]
    
    else:
        assert False, "=> no checkpoint found at {}".format(path)

使用PyTorch模型进行推理,需要包含模型代码。也可以使用ONNX模型进行推理,这样代码更简洁。下面的代码将PyTorch模型转换成ONNX模型。

def torch2onnx(model_path, output_path):
    ckpt = torch.load(model_path, map_location="cpu")
    model = resnet50(feature_dim=256)
    
    new_ckpt_state_dict = OrderedDict()
    for k, v in ckpt["state_dict"].items():
        new_ckpt_state_dict[k[12:]] = v
        
    model.load_state_dict(new_ckpt_state_dict)
    
    dummy_input = torch.randn(1, 3, 112, 112, device="cpu")
    input_names = ["input"]
    output_names = ["output"]
    torch.onnx.export(model, dummy_input, output_path, verbose=True, input_names=input_names, output_names=output_names)

def checkonnx(onnx_model_path):
    # Load the ONNX model
    onnx_model = onnx.load(onnx_model_path)
    # Check that the IR is well formed
    onnx.checker.check_model(onnx_model)
    
    ort_session = ort.InferenceSession(onnx_model_path)
    outputs = ort_session.run(None, {'input': np.random.randn(1, 3, 112, 112).astype(np.float32)})
    print(outputs)

Pytorch模型的保存和加载

参考资料:《模型推理之服务化:Torch模型服务化?难用!》
上面的内容介绍了一种Pytorch模型的加载方法和ONNX模型的加载方法。实际上,Pytorch模型有3种保存和加载方式。

  • 1 仅仅保存模型中的参数(上面介绍的那种)
// save
torch.save(model.state_dict(), "model.pkl")
// load
model.load_state_dict(torch.load("model.pkl"))
  • 2 保存整个模型
// save
torch.save(model, "model.pt")
// load
model = torch.load("model.pt")
  • 3 Pytorch为了部署推出的Torchscript格式
    这种格式的Pytorch模型可能很多人比较陌生,其目的是把模型静态化并保存。
// save
script_model = torch.jit.trace(model, dummy_input)
torch.jit.save(script_model, "model.pth")
// load
script_model = torch.jit.load("model.pth")

TorchScript is a way to create serializable and optimizable models from PyTorch code. Any TorchScript program can be saved from a Python process and loaded in a process where there is no Python dependency.
We provide tools to incrementally transition a model from a pure Python program to a TorchScript program that can be run independently from Python, such as in a standalone C++ program. This makes it possible to train models in PyTorch using familiar tools in Python and then export the model via TorchScript to a production environment where Python programs may be disadvantageous for performance and multi-threading reasons.

数据准备

使用opencv读取图像

  • cv2.imread()读取的图像是BGR格式,tensor的排列为[H, W, C], 每个元素的数据类型为uint8
  • transforms.ToTensor()将tensor的排列变成[C, H, W],同时每个元素的数据类型为torch.float32,范围归一化成[0, 1]
import cv2
import torchvision.transforms as transforms

img_path = "/Users/tp/Documents/Data/MS1M/emore_ltc/sample_images/10/10_707.jpg"
img = cv2.imread(img_path)
print(img.shape)
>> (112, 112, 3)
print(img.dtype)
>> uint8
# Convert BGR to RGB
img = img[:, :, ::-1]

img_part = cv2.resize(img, (2, 2))
print(img_part.shape)
>> (2, 2, 3)
print(img_part)
>> [[186 206 234]
      [ 73  94 112]]
    
     [[152 180 211]
      [110 133 151]]]

tensor1 = transforms.ToTensor()(img_part)
print(tensor1)
>> tensor([[[0.7294, 0.2863],
             [0.5961, 0.4314]],
    
            [[0.8078, 0.3686],
             [0.7059, 0.5216]],
    
            [[0.9176, 0.4392],
             [0.8275, 0.5922]]])

print(tensor1.shape)
>> torch.Size([3, 2, 2])

使用PIL的Image读取图像

  • Image读取的图像为RGB格式
from PIL import Image
img_pil = Image.open(img_path)
print(type(img_pil))
print(img_pil.size)
>> <class 'PIL.JpegImagePlugin.JpegImageFile'>
    (112, 112)
tensor_pil = transforms.ToTensor()(img_pil)
print(tensor_pil[:, :2, :2])
>> 
tensor([[[0.2549, 0.2588],
         [0.2863, 0.2824]],

        [[0.2392, 0.2431],
         [0.2706, 0.2667]],

        [[0.1961, 0.2000],
         [0.2275, 0.2235]]])

img_cv = cv2.imread(img_path)
tensor_cv = transforms.ToTensor()(img_cv)
print(tensor_cv[:, :2, :2])
>> 
tensor([[[0.1961, 0.2000],
         [0.2275, 0.2235]],

        [[0.2392, 0.2431],
         [0.2706, 0.2667]],

        [[0.2549, 0.2588],
         [0.2863, 0.2824]]])

构建InferDataset

class Infer_Dataset(data.Dataset):
    def __init__(self, img_dir, transform=None):
        self.img_dir = img_dir
        self.transform = transform
        self.img_list = os.listdir(self.img_dir)
        
    def __getitem__(self, index):
        img_path = os.path.join(self.img_dir, self.img_list[index])
        img = cv2.imread(img_path)
        # 将BGR转换成RGB
        img = img[:,:,::-1]
        img = cv2.resize(img, (112, 112))
        
        if self.transform is not None:
            img = self.transform(img)
        else:
            img = torch.from_numpy(img)
        return img_path, img
        
    def __len__(self):
        return len(self.img_list)

模型推理

PyTorch模型推理

feature_dim = 256
model_path = "/Users/tp/Documents/Data/MS1M/resnet50_part0_train.pth.tar"
img_dir ="/Users/tp/Documents/Data/MS1M/emore_ltc/sample_images/10"

model = resnet50(feature_dim=feature_dim)
load_ckpt(model_path, model, strict=False, not_match=True)

normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                std=[0.3125, 0.3125, 0.3125])
infer_transform = transforms.Compose([
                        transforms.ToTensor(),
                        normalize,
                        ])
inferset = Infer_Dataset(img_dir, transform=infer_transform)
# num_workers是用来指定开多进程的数量,默认值为0,表示不启用多进程
inferloader = torch.utils.data.DataLoader(inferset, batch_size=16, shuffle=False, num_workers=0, drop_last=False)

model.eval()
for idx, (img_path, img) in enumerate(inferloader):
    print(type(img))
    embedding = model.forward(img)
    print(embedding)

ONNX模型推理

onnx_session = ort.InferenceSession(output_path)

for idx, (img_path, img) in enumerate(inferloader): 
    print(type(img))
    img = np.array(img).astype(np.float32)
    # 使用ONNX推理, 输入的shape必须和构建ONNX模型时的shape完全一致
    img = img[0:1, :, :, :]
    print(img.shape)
    embedding = onnx_session.run(None, input_feed={"input": img})
    print(embedding)
  • PyTorch模型的输入类型自然是torch.tensor(),ONNX模型的输入类型是numpy.array()。
  • 关于使用ONNX进行模型推理,可以参考onnx/model中的workflow_scripts代码。一个模块化的处理方式是写一个ONNXModel类。
posted @ 2021-07-24 17:04  渐渐的笔记本  阅读(1414)  评论(0编辑  收藏  举报