堆排序
一、堆排序算法的基本特性
时间复杂度:O(nlgn)...
//等同于归并排序
最坏:O(nlgn)
空间复杂度:O(1).
不稳定。
二、堆与最大堆的建立
要介绍堆排序算法,咱们得先从介绍堆开始,然后到建立最大堆,最后才讲到堆排序算法。
2.1、堆的介绍
如下图,
a),就是一个堆,它可以被视为一棵完全二叉树。
每个堆对应于一个数组b),假设一个堆的数组A,
我们用length[A]表述数组中的元素个数,heap-size[A]表示本身存放在A中的堆的元素个数。
当然,就有,heap-size[A]<=length[A]。
树的根为A[1],i表示某一结点的下标,
则父结点为PARENT(i),左儿子LEFT[i],右儿子RIGHT[i]的关系如下:
PARENT(i)
return |_i/2_|
LEFT(i)
return 2i
RIGHT(i)
return 2i + 1
二叉堆根据根结点与其子结点的大小比较关系,分为最大堆和最小堆。
最大堆:
根以外的每个结点i都不大于其根结点,即根为最大元素,在顶端,有
A[PARENT(i)] (根)≥ A[i] ,
最小堆:
根以外的每个结点i都不小于其根结点,即根为最小元素,在顶端,有
A[PARENT(i)] (根)≤ A[i] .
在本节的堆排序算法中,我们采用的是最大堆;最小堆,通常在构造最小优先队列时使用。
由前面,可知,堆可以看成一棵树,所以,堆的高度,即为树的高度,O(lgn)。
所以,一般的操作,运行时间都是为O(lgn)。
具体,如下:
The MAX-HEAPIFY:O(lgn) 这是保持最大堆的关键.
The BUILD-MAX-HEAP:线性时间。在无序输入数组基础上构造最大堆。
The HEAPSORT:O(nlgn) time, 堆排序算法是对一个数组原地进行排序.
The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY, HEAP-MAXIMUM:O(lgn)。
可以让堆作为最小优先队列使用。
算法实现:
堆的存储结构:
typedef struct HeapStruct { int *elements;//存储堆元素的数组 int size; //当前堆中元素的个数 int capacity;//堆的最大容量 }MaxHeap;
插入:将新插入的元素放在最后位置,与其父节点比较,如果大于父节点则交换;
删除:取最大结点(根节点,下标为一),然后将最后的叶结点放置在根节点,与左右孩子比较,如果小于较大的孩子结点则交换。
建立堆:1.依次调用插入函数,效率不高。
2.先顺序存放元素,然后将整个堆分为各各小堆,从最后的小堆开始调整,直至整个堆调整完毕,调整方法与删除方法相同。
整体代码实现:
#include<stdio.h> #include<stdlib.h> #define MaxData 10000 typedef struct HeapStruct { int *elements;//存储堆元素的数组 int size; //当前堆中元素的个数 int capacity;//堆的最大容量 }MaxHeap; MaxHeap *creat(int MaxSize)//常见最大容量为MaxSize的空的最大堆 { MaxHeap * H=(MaxHeap *)malloc(sizeof(struct HeapStruct)); H->elements=(int *)malloc(sizeof(int)*MaxSize+1);// 从下标1开始存放 H->size=0; H->capacity=MaxSize; H->elements[0]=MaxData; return H;//定义哨兵为大于堆中所有可能的元素,便于以后更快操作 } void Insert(MaxHeap *H,int item) { int i; if(H->size==H->capacity) { printf("最大堆已满\n"); return ; } i=++H->size;//i指向堆中最后一个元素的位置 for( ;item>H->elements[i/2];i=i/2)//与父亲结点比较,向下过滤 ,其中element[0]为哨兵,不小于最大元素,防止越界 H->elements[i]=H->elements[i/2]; H->elements[i]=item;//将item插入 } int DeleteMax(MaxHeap *H) { int parent,child; int max,temp; if(H->size==0 ) { printf("堆为空"); return ; } max=H->elements[1]; temp=H->elements[(H->size)--]; for(parent=1;parent*2<=H->size;parent=child)//parent<=H->size判断有没有左儿子,如果左儿子都没有,右儿子不可能有 { child=parent*2;//child指向左儿子 if(child!=H->size&&H->elements[child]<H->elements[child+1])//child!=H->size如果不是最后一个,说明存在右儿子 child++; //child指向左右孩子中较大的 if(temp>=H->elements[child]) break; else H->elements[parent]=H->elements[child]; } H->elements[parent]=temp; return max; } MaxHeap* CreatHeap(void)//分割成许多小堆,从最后一个小堆,依次向前调整 { MaxHeap *H=creat(500); while(1) { int temp; printf("请输入数据(-1结束);\n"); scanf("%d",&temp); if(temp==-1) break; else H->elements[++H->size]=temp; } int parent,child,temp,n; n=H->size/2;//指向最后一个有孩子的父结点 while(n>0) { parent=n; temp=H->elements[parent]; for( ;parent*2<=H->size;parent=child) { child=parent*2;//child指向左儿子 if(child!=H->size&&H->elements[child]<H->elements[child+1]) child++; if(temp>=H->elements[child]) break; else H->elements[parent]=H->elements[child]; } H->elements[parent]=temp; n--; } return H; } int main() { MaxHeap *H=CreatHeap(); int i;
scanf("%d",&i); Insert(H,i); while(H->size!=0) { int i=DeleteMax(H); printf("%4d",i); } return 0; }
常见应用:优先队列