Python + 超级鹰 识别图形验证码

 

一、下载

1.进入官网:http://www.chaojiying.com/,注册完成后,进行登录

 

 2.点击开发文档,点击Python语言示例

 

3.进行示例下载

 

4.解压后的文件

注:关注公众号,进行账户绑定,可获得1000题分

 

二、简单使用

直接上代码 (*^▽^*)

#!/usr/bin/env python
# coding:utf-8

import requests
from hashlib import md5
from PIL import Image
from PIL import ImageEnhance

class Chaojiying_Client(object):

    def __init__(self, username, password, soft_id):
        self.username = username
        password =  password.encode('utf8')
        self.password = md5(password).hexdigest()
        self.soft_id = soft_id
        self.base_params = {
            'user': self.username,
            'pass2': self.password,
            'softid': self.soft_id,
        }
        self.headers = {
            'Connection': 'Keep-Alive',
            'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
        }

    def PostPic(self, im, codetype):
        """
        im: 图片字节
        codetype: 题目类型 参考 http://www.chaojiying.com/price.html
        """
        params = {
            'codetype': codetype,
        }
        params.update(self.base_params)
        files = {'userfile': ('ccc.jpg', im)}
        r = requests.post('http://upload.chaojiying.net/Upload/Processing.php', data=params, files=files, headers=self.headers)
        return r.json()

    def ReportError(self, im_id):
        """
        im_id:报错题目的图片ID
        """
        params = {
            'id': im_id,
        }
        params.update(self.base_params)
        r = requests.post('http://upload.chaojiying.net/Upload/ReportError.php', data=params, headers=self.headers)
        return r.json()
    
#此部分源码没有,主要是对图片进行了处理,使识别更加准确
def rangeImage(path): img = Image.open(path) imgry = img.convert('L') sharpness = ImageEnhance.Contrast(imgry) sharp_img = sharpness.enhance(2.0) sharp_img.save(path) im = open(path, 'rb').read() return im if __name__ == '__main__': chaojiying = Chaojiying_Client('你的账号', '你的密码', '96001') path = 'a.png' im = Chaojiying_Client.rangeImage(path) code = chaojiying.PostPic(im, 1902)['pic_str'] print(code)

 

处理前的图片

 

处理后的图片

 

识别结果

 

三、补充

百度AI的我也做了实验,感觉,嗯???!!!!,自行比较

from aip import AipOcr
import re
#现在百度AI官网申请人工智能接口信息
# client_id 为官网获取的AK, client_secret 为官网获取的SK
APP_ID=""
API_KEY=""
SECRET_KEY=""
client=AipOcr(APP_ID,API_KEY,SECRET_KEY)

with open(r"chaojiying/889.png", "rb") as f:

    image=f.read()

data=str(client.basicGeneral(image)).replace(" ","")
pat=re.compile(r"{'words':'(.*?')}") #得到一个json格式的内容,用正则匹配想要的信息
res=pat.findall(data)[0]
print(res)

 

识别的图片

 

识别结果

 

posted @ 2022-04-08 16:14  莲(LIT)  阅读(340)  评论(0编辑  收藏  举报